Do you want to publish a course? Click here

Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies

215   0   0.0 ( 0 )
 Added by Benjamin Favier
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the nonlinear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of nonlinearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially uniformly rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body rotator. This differential rotation modifies the properties of tidally excited inertial waves, changes the dissipative properties of the flow, and eventually becomes unstable to a secondary shear instability provided that the Ekman number is sufficiently small. Our main result is that the inclusion of nonlinearities eventually modifies the flow and the resulting dissipation from what linear calculations would predict, which has important implications for tidal dissipation in fluid bodies. We finally discuss some limitations of our simplified model, and propose avenues for future research to better understand the tidal evolution of rotating planets and stars.



rate research

Read More

Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are modelled numerically, within the framework of the recently derived 2+1-dimensional cKdV-type equation. In a case study, we consider concentric waves from a localised initial condition and waves in a 2D version of the dam-break problem, as well as discussing the effect of a piecewise-constant shear flow. The modelling shows, in particular, the formation of 2D dispersive shock waves (DSWs) and oscillatory wave trains. The surface and interfacial DSWs generated in our numerical experiments look distinctively different.
(abbreviated) In this paper we develop a consistent WKBJ formalism, together with a formal first order perturbation theory for calculating the properties of the inertial modes of a uniformly rotating coreless body (modelled as a polytrope and referred hereafter to as a planet) under the assumption of a spherically symmetric structure. The eigenfrequencies, spatial form of the associated eigenfunctions and other properties we obtained analytically using the WKBJ eigenfunctions are in good agreement with corresponding results obtained by numerical means for a variety of planet models even for global modes with a large scale distribution of perturbed quantities. This indicates that even though they are embedded in a dense spectrum, such modes can be identified and followed as model parameters changed and that first order perturbation theory can be applied. This is used to estimate corrections to the eigenfrequencies as a consequence of the anelastic approximation, which we argue here to be small when the rotation frequency is small. These are compared with simulation results in an accompanying paper with a good agreement between theoretical and numerical results. The results reported here may provide a basis of theoretical investigations of inertial waves in many astrophysical and other applications, where a rotating body can be modelled as a uniformly rotating barotropic object, for which the density has, close to its surface, an approximately power law dependence on distance from the surface.
Environmental fluid mechanics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a significantly higher drag is observed with increasing speeds. The drag as a function of depth is observed to decrease from being quadratic at low speeds to appearing more linear at higher speeds. By scaling the drag with the average weight of the grains acting on the rod, we obtain the effective friction $mu_e$ encountered over six orders of magnitude of speeds. While a constant $mu_e$ is found when the grain size, rod depth and fluid viscosity are varied at low speeds, a systematic increase is observed as the speed is increased. We analyze $mu_e$ in terms of the inertial number $I$ and viscous number $J$ to understand the relative importance of inertia and viscous forces, respectively. For sufficiently large fluid viscosities, we find that the effect of varying the speed, depth, and viscosity can be described by the empirical function $mu_e = mu_o + k J^n$, where $mu_o$ is the effective friction measured in the quasi-static limit, and $k$ and $n$ are material constants. The drag is then analyzed in terms of the effective viscosity $eta_e$ and found to decrease systematically as a function of $J$. We further show that $eta_e$ as a function of $J$ is directly proportional to the fluid viscosity and the $mu_e$ encountered by the rod.
Complex mixing and magnetic field generation occurs within stellar interiors particularly where there is a strong shear flow. To obtain a comprehensive understanding of these processes, it is necessary to study the complex dynamics of shear regions. Due to current observational limitations, it is necessary to investigate the inevitable small-scale dynamics via numerical calculations. Here, we examine direct numerical calculations of a local model of unstable shear flows in a compressible polytropic fluid primarily in a two-dimensional domain, where we focus on determining how key parameters affect the global properties and characteristics of the resulting saturated turbulent phase. We consider the effect of varying both the viscosity and the thermal diffusivity on the non-linear evolution. Moreover, our main focus is to understand the global properties of the saturated phase, in particular estimating for the first time the spread of the shear region from an initially hyperbolic tangent velocity profile. We find that the vertical extent of the mixing region in the saturated regime is generally determined by the initial Richardson number of the system. Further, the characteristic quantities of the turbulence, i.e. typical length-scale and the root-mean-square velocity are found to depend on both the Richardson number, and the thermal diffusivity. Finally, we present our findings of our investigation into saturated flows of a `secular shear instability in the low Peclet number regime with large Richardson numbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا