Do you want to publish a course? Click here

On the SW Sex-Type Eclipsing Cataclysmic Variable SDSS0756+0858

164   0   0.0 ( 0 )
 Added by Gagik Tovmassian
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We conducted a spectroscopic and photometric study of SDSS J075653.11+085831. X-ray observations were also attempted. We determined the orbital period of this binary system to be 3.29 hr. It is a deep eclipsing system, whose spectra shows mostly single-peaked Balmer emission lines and a rather intense He II line. There is also the presence of faint (often double-peaked) He I emission lines as well as several absorption lines, Mg I being the most prominent. All of these features point towards the affiliation of this object with the growing number of SW~Sex-type objects. We developed a phenomenological model of an SW~Sex system to reproduce the observed photometric and spectral features.



rate research

Read More

64 - J. Kara , S. Zharikov , M. Wolf 2021
Context: We present a new study of the eclipsing cataclysmic variable CzeV404 Her (Porb = 0.098 d) that is located in the period gap. Aims: This report determines the origin of the object and the system parameters and probes the accretion flow structure of the system. Methods: We conducted simultaneous time-resolved photometric and spectroscopic observations of CzeV404 Her. We applied our light-curve modelling techniques and the Doppler tomography method to determine the system parameters and analyse the structure of the accretion disk. Results: We found that the system has a massive white dwarf M_WD = 1.00(2) M_sun a mass ratio of q = 0.16, and a relatively hot secondary with an effective temperature T_2 = 4100(50) K. The system inclination is i = 78.8{deg}. The accretion disk spreads out to the tidal limitation radius and has an extended hot spot or line region. The hot spot or line is hotter than the remaining outer part of the disk in quiescence or in intermediate state, but does not stand out completely from the disk flux in (super)outbursts. Conclusions: We claim that this object represents a link between two distinct classes of SU UMa-type and SW Sex-type cataclysmic variables. The accretion flow structure in the disk corresponds to the SW Sex systems, but the physical conditions inside the disk fit the behaviour of SU UMa-type objects.
The dependencies of the phase of eclipse of the white dwarfs centre and the durations of the ascending and descending branches of the light curve on the binary systems parameters were computed using the spherically-symmetric approximation and the more accurate model of the elliptical projection onto the celestial sphere of the companion (red dwarf) that fills its Roche lobe. The parameters of eclipses in the classical eclipsing polar OTJ 071126+440405 = CSS 081231:071126+440405 were estimated.
We discuss a method for determination of the size of the emitting region close to the compact star in a binary system with eclipses by a secondary, which fills its Roche lobe. The often used approach is to model the Roche lobe by a sphere with the effective radius corresponding to the volume of the Roche lobe. This approach leads to a 4-6% overestimate of the radius, if taking into account the angular dimensions of the Roche lobe seen form the compact star. Andronov (1992) had shown that the projection of the Roche lobe onto the celestial sphere is close to an ellipse and had tabulated these dimensions as a function of the mass ratio. Also he published the coefficients of the approximation similar to that of the Eggleton (1983) for the sphere corresponding to the same volume. We compare results obtained for the circle+circle, ellipse+circle and ellipse+point approximations of the projections of the red dwarf and a white dwarf, respectively. Results are applied to the recently discovered eclipsing polar CSS 081231:071126+440405.
We report the detection of modulated circular polarization in V795 Her. The degree of polarization increases with wavelength and is modulated with a period of 19.54 min, which is very close to the reported optical QPO period. The modulation has a peak-to-peak amplitude of 0.12% in the U-band. The estimated magnetic field intensity is in the range 2-7 MG.
153 - Gavin Ramsay 2012
We present the results of an analysis of data covering 1.5 years of the dwarf nova V447 Lyr. We detect eclipses of the accretion disk by the mass donating secondary star every 3.74 hrs which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses. We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disk is larger during outburst than quiescence. This is consistent with an expansion of the outer disk radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا