Do you want to publish a course? Click here

WIMPs and Un-Naturalness

109   0   0.0 ( 0 )
 Added by Luca Vecchi
 Publication date 2013
  fields
and research's language is English
 Authors Luca Vecchi




Ask ChatGPT about the research

The WIMP miracle suggests a new physics threshold ranging from the weak scale up to several tens of TeVs. Obtaining the correct dark matter density in many theories aiming to solve the hierarchy problem may thus require some amount of tuning of the weak scale, hinting at a possible connection between WIMP dark matter and unnaturalness. We point out that dark matter direct detection is a very efficient probe of these unnatural models, and that existing data already provide important clues to the nature of the associated WIMPs. We present a model-independent, relativistic analysis of the signatures of a gauge-singlet dark matter candidate of arbitrary spin, and discuss the current experimental bounds from LUX and XENON100. For complex WIMPs, dark matter direct detection is complementary to electroweak precision tests, and can even compete with flavor constraints if the dark matter has spin. Particularly relevant for future searches are couplings to the Higgs mass operator, which are expected to be large if the electroweak scale is finely tuned. Care is devoted to the RG evolution of the effective Lagrangian. We find that the CP-even scalar coupling to charm quarks is enhanced by about 20% compared to the one-loop estimate. When pushed in the unnatural regime, warped extra dimensions -- with or without custodial symmetry -- become attractive theories for flavor, the Higgs mass, and dark matter. The WIMP argument basically sets an upper bound on unnaturalness, whereas direct detection experiments select scalar or real particles as the most compelling dark matter candidates.



rate research

Read More

The notion of stringy naturalness-- that an observable O_2 is more natural than O_1 if more (phenomenologically acceptable) vacua solutions lead to O_2 rather than O_1-- is examined within the context of the Standard Model (SM) and various SUSY extensions: CMSSM/mSUGRA, high-scale SUSY and radiatively-driven natural SUSY (RNS). Rather general arguments from string theory suggest a (possibly mild) statistical draw towards vacua with large soft SUSY breaking terms. These vacua must be tempered by an anthropic veto of non-standard vacua or vacua with too large a value of the weak scale m(weak). We argue that the SM, the CMSSM and the various high-scale SUSY models are all expected to be relatively rare occurances within the string theory landscape of vacua. In contrast, models with TeV-scale soft terms but with m(weak)~100 GeV and consequent light higgsinos (SUSY with radiatively-driven naturalness) should be much more common on the landscape. These latter models have a statistical preference for m_h~ 125 GeV and strongly interacting sparticles beyond current LHC reach. Thus, while conventional naturalness favors sparticles close to the weak scale, stringy naturalness favors sparticles so heavy that electroweak symmetry is barely broken and one is living dangerously close to vacua with charge-or-color breaking minima, no electroweak breaking or pocket universe weak scale values too far from our measured value. Expectations for how landscape SUSY would manifest itself at collider and dark matter search experiments are then modified compared to usual notions.
548 - J. Sayre , S. Wiesenfeldt 2008
The observed pattern of neutrino mass splittings and mixing angles indicates that their family structure is significantly different from that of the charged fermions. We investigate the implications of these data for the fermion mass matrices in grand unified theories with a type-I seesaw mechanism. We show that, with simple assumptions, naturalness leads to a strongly hierarchical Majorana mass matrix for heavy right-handed neutrinos and a partially cascade form for the Dirac neutrino matrix. We consider various model building scenarios which could alter this conclusion, and discuss their consequences for the construction of a natural model. We find that including partially lopsided matrices can aid us in generating a satisfying model.
148 - Gian F. Giudice 2013
I review the status of naturalness of the weak scale after the results from the LHC operating at an energy of 8 TeV. Talk delivered at the 2013 Europhysics Conference on High Energy Physics (EPS), Stockholm, Sweden, 18-24 July 2013.
Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale M ~ O(10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1-loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine the constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Lambda < M, a condition we denote by EFT-naturalness. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
The experiments at the Large Hadron Collider (LHC) have pushed the limits on masses of supersymmetric particles beyond the $sim$TeV scale. This compromises naturalness of the simplest supersymmetric extension of the Standard Model, the minimal supersymmetric Standard Model (MSSM). In this paper we advocate that perhaps the current experimental data are actually hinting towards the physics beyond MSSM. To illustrate this, we treat MSSM as a low energy limit of a more fundamental yet unspecified theory at a scale $Lambda$, and compute the fine-tuning measure $Delta$ for generic boundary conditions on soft SUSY breaking parameters and various cut-off scales. As a general trend we observe reduction in fine-tuning together with lowering $Lambda$. In particular, perfectly natural [$Delta lesssim mathcal{O}(10)$] theories with a multi-TeV spectrum of supersymmetric particles and consistent with all current observations can be obtained for $Lambda sim mathcal{O}(100)$TeV. The lowering of the fine-tuning for large cut-off scales can also be observed in theories exhibiting special quasi-fixed point behaviours of parameters. Our observations call for a more throughout exploration of possible alternative ultraviolet completions of MSSM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا