Do you want to publish a course? Click here

The CMSSM and NUHM1 after LHC Run 1

128   0   0.0 ( 0 )
 Added by Keith Olive
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with mu > 0 and < 0 and the NUHM1 with mu > 0, incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with MET accompanied by jets with the full 7 and 8 TeV data, the ATLAS and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of B_s to mu+mu- and B_d to mu+mu-. Our results are based on samplings of the parameter spaces of the CMSSM for both mu>0 and mu<0 and of the NUHM1 for mu > 0 with 6.8 x 10^6, 6.2 x 10^6 and 1.6 x 10^7 points, respectively, obtained using the MultiNest tool. The impact of the Higgs mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of M_h than previo



rate research

Read More

We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, $m^2_{H_{u,d}}$, vary independently from the universal soft SUSY-breaking contributions $m^2_0$ to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over $4 times 10^8$ points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as their searches for supersymmetric jets + MET signals using the full LHC Run~1 data, the measurements of $B_s to mu^+ mu^-$ by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared for squarks and sleptons, $m_0^2 < 0$, as well as $m^2_{H_u} < m^2_{H_d} < 0$. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of $g_mu - 2$ and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum $chi^2 = 32.5$ with 21 degrees of freedom (dof) in the NUHM2, to be compared with $chi^2/{rm dof} = 35.0/23$ in the CMSSM, and $chi^2/{rm dof} = 32.7/22$ in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E_T events and long-lived charged particles, whereas their H/A funnel, focus-point and chargino_1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is chargino_1 coannihilation: {parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status of SUSY in global analyses after the LHC Run 1 is summarized.
We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets + MET signals using ~ 5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for B_s to mu+mu- by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M_h ~ 125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS 5/fb constraint has relatively limited effects on the 68 and 95% CL regions in the (m_0, m_1/2) planes of the CMSSM and NUHM1. The new B_s to mu+mu- constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95% CL regions in the (M_A, tan beta) planes of both models, reducing the best-fit values of tan beta. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95% CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m_0, m_1/2 in the CMSSM, and increase the global chi^2 from 31.0 to 32.8, reducing the p-value from 12% to 8.5%. In the case of the NUHM1, they have little effect on the best-fit values of m_0, m_1/2, but increase the global chi^2 from 28.9 to 31.3, thereby reducing the p-value from 15% to 9.1%.
We present results of global fits of all relevant experimental data on rare $b to s$ decays. We observe significant tensions between the Standard Model predictions and the data. After critically reviewing the possible sources of theoretical uncertainties, we find that within the Standard Model, the tensions could be explained if there are unaccounted hadronic effects much larger than our estimates. Assuming hadronic uncertainties are estimated in a sufficiently conservative way, we discuss the implications of the experimental results on new physics, both model independently as well as in the context of the minimal supersymmetric standard model and models with flavour-changing $Z$ bosons. We discuss in detail the violation of lepton flavour universality as hinted by the current data and make predictions for additional lepton flavour universality tests that can be performed in the future. We find that the ratio of the forward-backward asymmetries in $B to K^* mu^+mu^-$ and $B to K^* e^+e^-$ at low dilepton invariant mass is a particularly sensitive probe of lepton flavour universality and allows to distinguish between different new physics scenarios that give the best description of the current data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا