Do you want to publish a course? Click here

Multipolar, magnetic and vibrational lattice dynamics in the low temperature phase of uranium dioxide

385   0   0.0 ( 0 )
 Added by Roberto Caciuffo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of inelastic neutron scattering experiments performed with triple-axis spectrometers to investigate the low-temperature collective dynamics in the ordered phase of uranium dioxide. The results are in excellent agreement with the predictions of mean-field RPA calculations emphasizing the importance of multipolar superexchange interactions. By comparing neutron scattering intensities in different polarization channels and at equivalent points in different Brillouin zones, we show the mixed magneto-vibrational-quadrupolar character of the observed excitations. The high energy resolution afforded by the cold triple-axis spectrometer allowed us to study in detail the magnon-phonon interaction giving rise to avoided crossings along the $[00xi]$ reciprocal space direction.



rate research

Read More

We provide a first-principle, materials-specific theory of multipolar order and superexchange in NpO$_2$ by means of a non-collinear local-density approximation +$U$ (LDA+$U$) method. Our calculations offer a precise microscopic description of the triple-$q$-antiferro ordered phase in the absence of any dipolar moment. We find that, while the most common non-dipolar degrees of freedom (e.g., electric quadrupoles and magnetic octupoles) are active in the ordered phase, both the usually neglected higher-order multipoles (electric hexadecapoles and magnetic triakontadipoles) have at least an equally significant effect.
The origin of non-collinear magnetic order in UO$_{2}$ is studied by an ab initio dynamical-mean-field-theory framework in conjunction with a linear-response approach for evaluating inter-site superexchange interactions between U 5$f^{2}$ shells. The calculated quadrupole-quadruple superexchange interactions are found to unambiguously resolve the frustration of face-centered-cubic U sublattice toward stabilization of the experimentally observed non-collinear 3k-magnetic order. Therefore, the exotic 3k antiferromagnetic order in UO$_{2}$ can be accounted for by a purely electronic exchange mechanism acting in the undistorted cubic lattice structure. The quadrupolar short-range order above magnetic ordering temperature $T_N$ is found to qualitatively differ from the long-range order below $T_N$.
Uranium mononitride, UN, is considered a potential accident tolerant fuel due to its high uranium density, high thermal conductivity, and high melting point. Compared with the relatively inert UO2, UN has a high reactivity in water, however, studies have not considered the significant effect of radiation, which is known to cause corrosion of UO2. This study uses 0.1 M H2O2 to simulate the effects of water radiolysis in order to compare the radiolytic corrosion rates of UO2, UN, and U2N3 thin films at room temperature. X-ray reflectivity was used to investigate the changes in film morphology as a function of H2O2 exposure time, allowing changes in film thickness and roughness to be observed on the Angstrom length-scale. Results showed significant differences between UO2, UN, and U2N3, with corrosion rates of 0.083(3), 0.020(4), and 0.47(8) A/s, respectively, showing that UN corrodes more slowly than UO2 in 0.1 M H2O2.
We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggested to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO$_4$. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is hidden in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا