Estimation of Plasma Parameters in an Accretion Column near the Surface of Accreting White Dwarfs from Their Flux Variability


Abstract in English

We consider the behavior of matter in the accretion column that emerges under accretion in binary systems near the surface of a white dwarf. The plasma heated in a standing shock wave near the white dwarf surface efficiently radiates in the X-ray energy band. We suggest a method for estimating post-shock plasma parameters, such as the density, temperature, and height of the hot zone, from the power spectrum of its X-ray luminosity variability. The method is based on the fact that the flux variability amplitude for the hot region at various Fourier frequencies depends significantly on its cooling time, which is determined by the parameters of the hot zone in the accretion column. This allows the density and temperature of the hot matter to be estimated. We show that the characteristic cooling time can be efficiently determined from the break frequency in the power spectrum of the X-ray flux variability for accreting white dwarfs. The currently available X-ray instruments do not allow such measurements to be made because of an insufficient collecting area, but this will most likely become possible with new-generation large-area X-ray spectrometers.

Download