Do you want to publish a course? Click here

Nonperturbative Quantum Field Evolution

182   0   0.0 ( 0 )
 Added by Xingbo Zhao
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a nonperturbative, first-principles approach to time-dependent problems in quantum field theory. In this approach, the time-evolution of quantum field configurations is calculated in real time and at the amplitude level. This method is particularly suitable for treating systems interacting with a time-dependent background field. As a test problem, we apply this approach to QED and study electron acceleration and the associated photon emission in a time- and space-dependent electromagnetic background field.



rate research

Read More

We present a nonperturbative, first-principles numerical approach for time-dependent problems in the framework of quantum field theory. In this approach the time evolution of quantum field systems is treated in real time and at the amplitude level. As a test application, we apply this method to QED and study photon emission from an electron in a strong, time-dependent external field. Coherent superposition of electron acceleration and photon emission is observed in the nonperturbative regime.
185 - Shuai Y.F. Liu , Ralf Rapp 2020
The radiative energy loss of fast partons traveling through the quark-gluon plasma (QGP) is commonly studied within perturbative QCD (pQCD). Nonperturbative (NP) effects, which are expected to become important near the critical temperature, have been much less investigated. Here, we utilize a recently developed $T$-matrix approach to incorporate NP effects for gluon emission off heavy quarks propagating through the QGP. We set up four cases that contain, starting from a Born diagram calculation with color-Coulomb interaction, an increasing level of NP components, by subsequently including (remnants of) confining interactions, resummation in the heavy-light scattering amplitude, and off-shell spectral functions for both heavy and light partons. For each case we compute the power spectra of the emitted gluons, heavy-quark transport coefficients (drag and transverse-momentum broadening, $hat{q}$), and the path-length dependent energy loss within a QGP brick at fixed temperature. Investigating the differences in these quantities between the four cases illustrates how NP mechanisms affect gluon radiation processes. While the baseline perturbative processes experience a strong suppression of soft radiation due to thermal masses of the emitted gluons, confining interactions, ladder resummations and broad spectral functions (re-)generate a large enhancement toward low momenta and low temperatures. For example, for a 10 GeV charm quark at 200 MeV temperature, they enhance the transport coefficients by up to a factor of 10, while the results smoothly converge to perturbative results at sufficiently hard scales.
We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically improved. The state vector of a physical system is calculated in light-front dynamics. From the general properties of this form of dynamics, the state vector can be further decomposed in well-defined Fock components. In order to control the convergence of this expansion, we advocate the use of the covariant formulation of light-front dynamics. In this formulation, the state vector is projected on an arbitrary light-front plane $omega cd x=0$ defined by a light-like four-vector $omega$. This enables us to control any violation of rotational invariance due to the truncation of the Fock expansion. We then present a general nonperturbative renormalization scheme in order to avoid field-theoretical divergences which may remain uncancelled due to this truncation. This general framework has been applied to a large variety of models. As a starting point, we consider QED for the two-body Fock space truncation and calculate the anomalous magnetic moment of the electron. We show that it coincides, in this approximation, with the well-known Schwinger term. Then we investigate the properties of a purely scalar system in the three-body approximation, where we highlight the role of antiparticle degrees of freedom. As a non-trivial example of our framework, we calculate the structure of a physical fermion in the Yukawa model, for the three-body Fock space truncation (but still without antifermion contributions). We finally show why our approach is also well-suited to describe effective field theories like chiral perturbation theory in the baryonic sector.
In this paper, we compare the RMF theory and the model of deformed oscillator shells (DOS) in description of the quantum properties of the bound states of the spherically symmetric light nuclei. We obtain an explicit analytical relation between differential equations for the RMF theory and DOS model, which determine wave functions for nucleons. On such a basis we perform analysis of correspondence of quantum properties of nuclei. We find: (1) Potential $V_{RMF}$ of the RMF theory for nucleons has the wave functions $f$ and $g$ with joint part $h$ coincident exactly with the nucleon wave function of DOS model with potential $V_{rm shell}$. But, a difference between $V_{RMF}$ and $V_{rm shell}$ is essential for any nucleus. (2) The nucleon wave functions and densities obtained by the DOS and RMF theories are essentially different. The nucleon densities of the RMF theory contradict to knowledge about distribution of the proton and neutron densities inside the nuclei obtained from experimental data. This indicates that $g$ and $f$ have no sense of the wave functions of quantum physics. But, $h$ provides proper description of quantum properties of nucleons inside the nucleus. (3) We calculate meson function $w^{0}$ and potential $V_{w}$ in RMF theory based on the found nucleon density. (4) $f$ and $g$ are not solutions of Dirac equation with $V_{w}$. If the meson theory describes quantum properties of nucleus well, then a difference between $V_{w}$ and $V_{RMF}$ should be as small as possible. We introduce new quantum corrections characterizing difference between these potentials. We find that (a) The function $w^{0}$ should be reinforced strongly, (b) The corrections are necessary to describe the quantum properties of the nuclei.
The idea that the parton system created in relativistic heavy-ion collisions (i) emerges in a state with transverse momenta close to thermodynamic equilibrium and (ii) its evolution at early times is dominated by the 2-dimensional (transverse) hydrodynamics of the ideal fluid is investigated. It is argued that this mechanism may help to solve the problem of early equilibration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا