Doping asymmetry of superconductivity coexisting with antiferromagnetism in spin fluctuation theory


Abstract in English

We generalize the theory of Cooper pairing by spin excitations in the metallic antiferromagnetic state to include situations with electron and/or hole pockets. We show that Cooper pairing arises from transverse spin waves and from gapped longitudinal spin fluctuations of comparable strength. However, each of these interactions, projected on a particular symmetry of the superconducting gap, acts primarily within one type of pocket. We find a nodeless $d_{x^2-y^2}$-wave state is supported primarily by the longitudinal fluctuations on the electron pockets, and both transverse and longitudinal fluctuations support nodeless odd-parity spin singlet $p-$wave symmetry on the hole pockets. Our results may be relevant to the asymmetry of the AF/SC coexistence state in the cuprate phase diagram, as well as for the nodal gap observed recently for strongly underdoped cuprates.

Download