Do you want to publish a course? Click here

Design and test of an extremely high resolution Timing Counter for the MEG II experiment: preliminary results

426   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The design and tests of Timing Counter elements for the upgrade of the MEG experiment, MEG II,is presented. The detector is based on several small plates of scintillator with a Silicon PhotoMultipliers dual-side readout. The optimisation of the single counter elements (SiPMs, scintillators, geometry) is described. Moreover, the results obtained with a first prototype tested at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF) are presented.



rate research

Read More

The MEG II experiment at Paul Scherrer Institut in Switzerland will search for the lepton flavour violating muon decay, $mu^+to e^+gamma$, with a sensitivity of $4times10^{-14}$ improving the existing limit of an order of magnitude. In 2016, we finished the construction of the MEG II Timing Counter, the subdetector dedicated to the measurement of the positron emission time. The first one-fourth of it was installed in the experimental area and we performed a pilot run with the MEG~II beam of $7times10^{7}mu^+/$s. The timing resolution reached the design value improving by a factor of two compared to MEG.
The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the $e^+$ in searching for the decay $mu^+ rightarrow e^+gamma$. It is part of a magnetic spectrometer with the $mu^+$ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. The design criteria, the obtained performances and the commissioning of the detector are presented herein.
The MEG detector is designed to test Lepton Flavor Violation in the $mu^+rightarrow e^+gamma$ decay down to a Branching Ratio of a few $10^{-13}$. The decay topology consists in the coincident emission of a monochromatic photon in direction opposite to a monochromatic positron. A precise measurement of the relative time $t_{e^+gamma}$ is crucial to suppress the background. The Timing Counter (TC) is designed to precisely measure the time of arrival of the $e^+$ and to provide information to the trigger system. It consists of two sectors up and down stream the decay target, each consisting of two layers. The outer one made of scintillating bars and the inner one of scintillating fibers. Their design criteria and performances are described.
The MEG experiment, designed to search for the mu+->e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the branching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.
We have developed a new laser-based time calibration system for the MEG II timing counter dedicated to timing measurement of positrons. The detector requires precise timing alignment between $sim,$500 scintillation counters. In this study, we present the calibration system which can directly measure the time offset of each counter relative to the laser-synchronized pulse. We thoroughly tested all the optical components and the uncertainty of this method is estimated to be 24 ps. In 2017, we installed the full system into the MEG II environment and performed a commissioning run. This method shows excellent stability and consistency with another method. The proposed system provides a precise timing alignment for SiPM-based timing detectors. It also has potential in areas such as TOF-PET.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا