Cooperative coupling of ultracold atoms and surface plasmons


Abstract in English

Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. While this goal has been achieved using high-finesse optical cavities, cavity-free approaches that are broadband and easy to build have attracted much attention recently. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. Excited surface plasmons are detected via leakage radiation into the substrate of the gold layer. A maximum Purcell factor of $eta_mathrm{P}=4.9$ is reached at an optimum distance of $z=250~mathrm{nm}$ from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.

Download