We investigate Co nanostructures on Bi$_{2}$Se$_{3}$ by means of scanning tunneling microscopy and spectroscopy [STM/STS], X-ray absorption spectroscopy [XAS], X-ray magnetic dichroism [XMCD] and calculations using the density functional theory [DFT]. In the single adatom regime we find two different adsorption sites by STM. Our calculations reveal these to be the fcc and hcp hollow sites of the substrate. STS shows a pronounced peak for only one species of the Co adatoms indicating different electronic properties of both types. These are explained on the basis of our DFT calculations by different hybridizations with the substrate. Using XMCD we find a coverage dependent spin reorientation transition from easy-plane toward out-of-plane. We suggest clustering to be the predominant cause for this observation.
Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi$_{2}$Se$_{3}$ crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between $0^circ$ and $90^circ$, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross-sections down to $24$~meV. There is therefore no signature of a camel-back in the valence band of our bulk samples, in accordance with the direct band gap predicted by $GW$ calculations.
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrier concentration (Ren textit{et al.} cite{Ren2011}). Here we present a study to further refine the bulk-insulating properties of BSTS. We have synthesized Bi$_{2-x}$Sb${_x}$Te$_{3-y}$Se$_{y}$ single crystals with compositions around $x = 0.5$ and $y = 1.3$. Resistance and Hall effect measurements show high resistivity and record low bulk carrier density for the composition Bi$_{1.46}$Sb$_{0.54}$Te$_{1.7}$Se$_{1.3}$. The analysis of the resistance measured for crystals with different thicknesses within a parallel resistor model shows that the surface contribution to the electrical transport amounts to 97% when the sample thickness is reduced to $1 mu$m. The magnetoconductance of exfoliated BSTS nanoflakes shows 2D weak antilocalization with $alpha simeq -1$ as expected for transport dominated by topological surface states.
Recent experiments show the spontaneous breaking of rotational symmetry in the superconducting topological insulators M$_{x}$Bi$_{2}$Se$_{3}$ (M represents Cu, Sr, or Nd), suggesting that the pairing belongs to a two-dimensional representation of the $D_{3d}$ symmetry group of the crystal. Motivated by these progresses, we construct an exhaustive list of possible two-component pairings of the M$_{x}$Bi$_{2}$Se$_{3}$ superconductors, both for the odd-parity $E_{u}$ representation and for the even-parity $E_{g}$ representation. Starting from a tight-binding model for the normal phase of Bi$_{2}$Se$_{3}$ and M$_{x}$Bi$_{2}$Se$_{3}$, we firstly construct the pairing channels in the spin-orbital basis, up to second-nearest-neighbor pairing correlations in the basal plane. We then infer the properties of these pairings by transforming them to the band (pseudospin) basis for the conduction band. A comparison with the key experimental consensuses on M$_{x}$Bi$_{2}$Se$_{3}$ superconductors shows that the true pairings should also be multichannel. Besides a nematic and time-reversal symmetric pairing combination, the other pairings that we have identified are chiral and nematic at the same time, which may be nonunitary and have a spontaneous magnetization. A complementary set of experiments are proposed to identify the true pairing symmetries of these superconductors and their evolution with the doping concentration $x$.
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and Bi$_2$Se$_2$Te. The highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending their utilization of topological surface state for future spintronic applications.
Using circularly polarized light is an alternative to electronic ways for spin injection into materials. Spins are injected at a point of the light illumination, and then diffuse and spread radially due to the in-plane gradient of the spin density. This diffusion is converted into a circular charge current by the inverse spin Hall effect (ISHE). With shining the circularly polarized light at asymmetric parts of the sample, such as near edges, we detected this current as a helicity-dependent component in the photocurrent. We present a model for this ISHE based on the experimental results and the finite-element-method (FEM) simulation of the potential distribution induced by spin injection. Our model shows that the ISHE photocurrent generates an electric dipole at the edge of the sample, causing the measured charge current. The asymmetric light-illumination shown here is a simple way to inject and manipulate spins, opening up a door for novel spintronic devices.