Do you want to publish a course? Click here

Young Stellar Objects close to Sgr A*

97   0   0.0 ( 0 )
 Added by Behrang Jalali
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim at modelling small groups of young stars such as IRS 13N, 0.1 pc away from Sgr A*, which is suggested to contain a few embedded massive young stellar objects. We perform hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a $4times10^6 ~ M_{odot}$ black hole, to constrain the formation and the physical conditions of such groups. We find that, the strong compression due to the black hole along the orbital radius vector of clumps evolving on highly eccentric orbits causes the clumps densities to increase to higher than the tidal density of Sgr A*, and required for star formation. This suggests that the tidal compression from the black hole could support star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.



rate research

Read More

It is often assumed that the strong gravitational field of a super-massive black hole disrupts an adjacent molecular cloud preventing classical star formation in the deep potential well of the black hole. Yet, young stars have been observed across the entire nuclear star cluster of the Milky Way including the region close ($<$0.5~pc) to the central black hole, Sgr A*. Here, we focus particularly on small groups of young stars, such as IRS 13N located 0.1 pc away from Sgr A*, which is suggested to contain about five embedded massive young stellar objects ($<$1 Myr). We perform three dimensional hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a $4times10^6~M_{odot}$ black hole, to constrain the formation and the physical conditions of such groups. The molecular clumps in our models assumed to be isothermal containing 100 $M_{odot}$ in $<$0.2 pc radius. Such molecular clumps exist in the circumnuclear disk of the Galaxy. In our highly eccentrically orbiting clump, the strong orbital compression of the clump along the orbital radius vector and perpendicular to the orbital plane causes the gas densities to increase to values higher than the tidal density of Sgr A*, which are required for star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.
The purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The analysis in based on the combination of spectroscopic parallax-based reddening and distance determinations with main sequence and pre-main sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 Mo), the slope Gamma of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. On the other hand, the young stellar objects in the surrounding clusters fields are classified by low resolution spectra, spectral energy distribution fit with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed young stellar objects (except one) are found to be massive (more than 8 Mo). Using VVV and GLIMPSE color-color cuts we have selected a large number of new young stellar object candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classification on the basis of the light curves.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For example, the observed HC$_{5}$N abundance toward the G28.28$-$0.36 MYSO is higher than that in L1527, which is one of the warm carbon chain chemistry (WCCC) sources, by more than one order of magnitude (Taniguchi et al., 2017). In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at $25 < T < 100$ K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC$_{5}$N, CH$_{3}$CCH, and CH$_{3}$OH observed in the G28.28$-$0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star-formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.
Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper-limit on the jet phase lasting approximately $6.5 times 10^4 yr$. Typical mass loss rates in the jet are found to be $1.4 times 10^{-5} M_odot yr^{-1}$ with associated momentum rates of the order $(1-2) times 10^{-2} M_odot km s^{-1} yr^{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا