Do you want to publish a course? Click here

Transverse Momentum Distributions in p-Pb collisions and Tsallis Thermodynamics

220   0   0.0 ( 0 )
 Added by Jean Cleymans
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The transverse momentum distributions of charged particles in p-Pb collisions as sqrt{s_{NN}} = 5.02 TeV measured by the ALICE collaboration are fitted using Tsallis statistics. The use of a thermodynamically consistent form of this distribution leads to an excellent description of the transverse momentum distributions for all rapidity intervals. The values of the Tsallis parameter q, the temperature T and the radius R of the system do not change within the measured pseudorapidity intervall.



rate research

Read More

438 - M. D. Azmi , J. Cleymans 2013
An overview is presented of transverse momentum distributions of particles at the LHC using the Tsallis distribution. The use of a thermodynamically consistent form of this distribution leads to an excellent description of charged and identified particles. The values of the Tsallis parameter q are truly remarkably consistent.
% An analysis is made of the particle composition (hadrochemistry) of the final state in proton-proton (p-p), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions as a function of the charged particle multiplicity ($dNchdeta$). The thermal model is used to determine the chemical freeze-out temperature as well as the radius and strangeness saturation factor $gamma_s$. Three different ensembles are used in the analysis namely, the grand canonical ensemble, the canonical ensemble with exact strangeness conservation and the canonical ensemble with exact baryon number, strangeness and electric charge conservation. It is shown that for high multiplicities (at least 20 charged hadrons in the mid-rapidity interval considered) the three ensembles lead to the same results.
282 - J. Cleymans , M. D. Azmi 2015
The charged particle transverse momentum ($p_T$) spectra measured by the ATLAS and CMS collaborations in proton - proton collisions at sqrt(s) = 0.9 and 7 TeV have been studied using Tsallis thermodynamics. A thermodynamically consistent form of the Tsallis distribution is used for fitting the transverse momentum spectra at mid-rapidity. It is found that the fits based on the proposed distribution provide an excellent description over 14 orders of magnitude with $p_T$ values up to 200 GeV/c.
The thermodynamic parameters like energy density, pressure, entropy density, temperature and particle density are determined from the transverse momentum distributions of charged particles in Pb-Pb collisions at the LHC. The results show a clear increase with the centrality and the beam energy in all parameters. It is determined that in the final freeze-out stage the energy density reaches a value of about 0.039 GeV/fm$^3$ for the most central collisions at $sqrt{s_{NN}}$ = 5.02 TeV. This is less than that at chemical freeze-out where the energy density is about 0.36 GeV/fm$^3$. This decrease approximately follows a $T^4$ law. The results for the pressure and entropy density are also presented for each centrality class at $sqrt{s_{NN}}$ = 2.76 and 5.02 TeV.
The transverse momentum distributions of various hadrons produced in most central Pb+Pb collisions at LHC energy Root(s_NN) = 2.76 TeV have been studied using our earlier proposed unified statistical thermal freeze-out model. The calculated results are found to be in good agreement with the experimental data measured by the ALICE experiment. The model calculation fits provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. Interestingly the model parameter fits reveal a strong collective flow in the system which appears to be a consequence of the increasing particle density at LHC. The model used incorporates a longitudinal as well as transverse hydrodynamic flow. The chemical potential has been assumed to be nearly equal to zero for the bulk of the matter owing to a high degree of nuclear transparency effect at such energies. The contributions from heavier decay resonances are also taken into account in our calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا