Do you want to publish a course? Click here

Effective Secrecy: Reliability, Confusion and Stealth

403   0   0.0 ( 0 )
 Added by Jie Hou
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

A security measure called effective security is defined that includes strong secrecy and stealth communication. Effective secrecy ensures that a message cannot be deciphered and that the presence of meaningful communication is hidden. To measure stealth we use resolvability and relate this to binary hypothesis testing. Results are developed for wire-tap channels and broadcast channels with confidential messages.



rate research

Read More

We consider a discrete memoryless broadcast channel consists of two users and a sender. The sender has two independent confidential messages for each user. We extend the work of Liu et al. on broadcast channels with two confidential messages with weak secrecy criterion to strong secrecy. Our results are based on an extension of the techniques developed by Hou and Kramer on bounding Kullback-Leibler divergence in context of textit{resolvability} and textit{effective secrecy}.
We investigate the secure communications over correlated wiretap Rayleigh fading channels assuming the full channel state information (CSI) available. Based on the information theoretic formulation, we derive closed-form expressions for the average secrecy capacity and the outage probability. Simulation results confirm our analytical expressions.
Non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (MIMO) systems are highly efficient. Massive MIMO systems are inherently resistant to passive attackers (eavesdroppers), thanks to transmissions directed to the desired users. However, active attackers can transmit a combination of legitimate user pilot signals during the channel estimation phase. This way they can mislead the base station (BS) to rotate the transmission in their direction, and allow them to eavesdrop during the downlink data transmission phase. In this paper, we analyse this vulnerability in an improved system model and stronger adversary assumptions, and investigate how physical layer security can mitigate such attacks and ensure secure (confidential) communication. We derive the secrecy outage probability (SOP) and a lower bound on the ergodic secrecy capacity, using stochastic geometry tools when the number of antennas in the BSs tends to infinity. We adapt the result to evaluate the secrecy performance in massive orthogonal multiple access (OMA). We find that appropriate power allocation allows NOMA to outperform OMA in terms of ergodic secrecy rate and SOP.
In this paper, an extended large wireless network under the secrecy constraint is considered. In contrast to works which use idealized assumptions, a more realistic network situation with unknown eavesdroppers locations is investigated: the legitimate users only know their own Channel State Information (CSI), not the eavesdroppers CSI. Also, the network is analyzed by taking in to account the effects of both fading and path loss. Under these assumptions, a power efficient cooperative scheme, named emph{stochastic virtual beamforming}, is proposed. Applying this scheme, an unbounded secure rate with any desired outage level is achieved, provided that the density of the legitimate users tends to infinity. In addition, by tending the legitimate users density to the infinity, the tolerable density of eavesdroppers will become unbounded too.
The deployment of unmanned aerial vehicle (UAV) for surveillance and monitoring gives rise to the confidential information leakage challenge in both civilian and military environments. The security and covert communication problems for a pair of terrestrial nodes against UAV surveillance are considered in this paper. To overcome the information leakage and increase the transmission reliability, a multi-hop relaying strategy is deployed. We aim to optimize the throughput by carefully designing the parameters of the multi-hop network, including the coding rates, transmit power, and required number of hops. In the secure transmission scenario, the expressions of the connection probability and secrecy outage probability of an end-to-end path are derived and the closed-form expressions of the optimal transmit power, transmission and secrecy rates under a fixed number of hops are obtained. In the covert communication problem, under the constraints of the detection error rate and aggregate power, the sub-problem of transmit power allocation is a convex problem and can be solved numerically. Simulation shows the impact of network settings on the transmission performance. The trade-off between secrecy/covertness and efficiency of the multi-hop transmission is discussed which leads to the existence of the optimal number of hops.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا