Do you want to publish a course? Click here

A Spitzer Search for Transits of Radial Velocity Detected Super-Earths

127   0   0.0 ( 0 )
 Added by Joshua Kammer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past four years, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to contain super-Earth sized bodies detected using the radial velocity technique. Here we present results from a Spitzer program to observe six of the most favorable RV detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 micron flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection (Henry et al. 2011) that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by MOST (Dragomir et al. 2013).



rate research

Read More

120 - J. Cabrera 2012
We explore the possibility of detecting Super Earths via transit timing variations with the satellite CoRoT.
We observed the transiting super-Earth exoplanet GJ1214b using Warm Spitzer at 4.5 microns wavelength during a 20-day quasi-continuous sequence in May 2011. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a re-analysis of previous transit observations by Desert et al. (2011). In total, we analyse 14 transits of GJ1214b at 4.5 microns, 3 transits at 3.6 microns, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe & Burrows (2012). Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke & Seager (2012) and Howe & Burrows (2012) using a chi-squared analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe & Burrows (2012) tholin-haze model remains the best fit, even when systematic differences among observers are considered.
590 - M. Gillon 2010
We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).
We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and are included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c and GJ3470 b to be 6.48$^{+0.99}_{-0.93}$, 2.14$^{+1.08}_{-1.04}$, and 12.58$^{+1.31}_{-1.28}$ M$_oplus$ respectively. K2-3 d was not significantly detected and has a 3-$sigma$ upper limit of 2.80 M$_oplus$. These two systems are training cases for future TESS systems; due to the low planet densities ($rho$ $<$ 3.7 g cm$^{-3}$) and bright host stars (K $<$ 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets.
281 - M. Gillon 2017
Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا