Do you want to publish a course? Click here

Timing of a Young Mildly Recycled Pulsar with a Massive White Dwarf Companion

135   0   0.0 ( 0 )
 Added by Patrick Lazarus
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis we show that several such effects will become measurable with continued observations over the next 10 years; thus PSR J1952+2630 has potential as a testbed for gravitational theories.



rate research

Read More

Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 kms). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of 1.6 M_sun for the progenitor of the pulsar, which is too low for the quark-nova mechanism proposed by Jiang et al. (2015). Similarly, the scenario of Freire & Tauris (2014), in which a WD collapses onto a neutron star via an rotationally-delayed accretion-induced collapse, requires both a high-mass differentially rotating progenitor and a significant momentum kick at birth under our constraints. Contrarily, we find that eccentricity pumping via interaction with a transient circumbinary disk is consistent with all inferred properties. Finally, we report tentative evidence for pulsations which, if confirmed, would transform the star into an unprecedented laboratory for WD physics and stellar convection.
We report on the results of a 4-year timing campaign of PSR~J2222$-0137$, a 2.44-day binary pulsar with a massive white dwarf (WD) companion, with the Nanc{c}ay, Effelsberg and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass $m_{p}=1.76,pm,0.06,M_odot$ and a WD mass $m_{c},=,1.293,pm,0.025, M_odot$. We also measure the rate of advance of periastron for this system, which is marginally consistent with the GR prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little ($< , 10^{-2} , M_odot$) mass accretion onto the neutron star (NS); hence, the current pulsar mass is, within uncertainties, its birth mass; the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR~J2222$-0137$ puts that system into a poorly tested parameter range.
409 - Joeri van Leeuwen 2014
PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hours. We here present a timing study based on five years of observations, conducted with the 5 largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters we find the pulsar mass to be 1.291(11) M_sol, and the companion mass 1.322(11) M_sol respectively. These masses fit well in the observed collection of double neutron stars, but are also compatible with other white dwarfs around young pulsars such as J1906+0746. Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an HI-absorption distance, which indicates that an optical confirmation of a white dwarf companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that young pulsar J1906+0746 is likely part of a double neutron star, or is otherwise orbited by an older white dwarf, in an exotic system formed through two stages of mass transfer.
83 - D. Mata Sanchez 2020
Binaries harbouring millisecond pulsars enable a unique path to determine neutron star masses: radio pulsations reveal the motion of the neutron star, while that of the companion can be characterised through studies in the optical range. PSR J1012+5307 is a millisecond pulsar in a 14.5-h orbit with a helium-core white dwarf companion. In this work we present the analysis of an optical spectroscopic campaign, where the companion star absorption features reveal one of the lightest known white dwarfs. We determine a white dwarf radial velocity semi-amplitude of K_2 = 218.9 +- 2.2 km/s, which combined with that of the pulsar derived from the precise radio timing, yields a mass ratio of q=10.44+- 0.11. We also attempt to infer the white dwarf mass from observational constraints using new binary evolution models for extremely low-mass white dwarfs, but find that they cannot reproduce all observed parameters simultaneously. In particular, we cannot reconcile the radius predicted from binary evolution with the measurement from the photometric analysis (R_WD=0.047+-0.003 Rsun). Our limited understanding of extremely low-mass white dwarf evolution, which results from binary interaction, therefore comes as the main factor limiting the precision with which we can measure the mass of the white dwarf in this system. Our conservative white dwarf mass estimate of M_WD = 0.165 +- 0.015 Msun, along with the mass ratio enables us to infer a pulsar mass of M_NS = 1.72 +- 0.16 Msun. This value is clearly above the canonical 1.4 Msun, therefore adding PSR J1012+5307 to the growing list of massive millisecond pulsars.
64 - S. Dai , M. C. Smith , S. Wang 2017
We report identification of the optical counterpart to the companion of the millisecond pulsar J2317+1439. At the timing position of the pulsar, we find an object with $g=22.96pm0.05$, $r=22.86pm0.04$ and $i=22.82pm0.05$. The magnitudes and colors of the object are consistent with it being a white dwarf. By comparing with white dwarf cooling models, we estimate that it has a mass of $0.39^{+0.13}_{-0.10}$ M$_{odot}$, an effective temperature of $8077^{+550}_{-470}$ K and a cooling age of $10.9pm0.3$ Gyr. Combining our results with published constraints on the orbital parameters obtained through pulsar timing, we estimate the pulsar mass to be $3.4^{+1.4}_{-1.1}$ M$_{odot}$. Although the constraint on the pulsar mass is still weak, there is a significant possibility that the pulsar could be more massive than two solar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا