G2C2 II: Integrated colour-metallicity relations for Galactic Globular Clusters in SDSS passbands


Abstract in English

We use our integrated SDSS photometry for 96 globular clusters in $g$ and $z$, as well as $r$ and $i$ photometry for a subset of 56 clusters, to derive the integrated colour-metallicity relation (CMR) for Galactic globular clusters. We compare this relation to previous work, including extragalactic clusters, and examine the influence of age, present-day mass function variations, structural parameters and the morphology of the horizontal branch on the relation. Moreover, we scrutinise the scatter introduced by foreground extinction (including differential reddening) and show that the scatter in the colour-metallicity relation can be significantly reduced combining two reddening laws from the literature. In all CMRs we find some low-reddening young GCs that are offset to the CMR. Most of these outliers are associated with the Sagittarius system. Simulations show that this is due less to age than to a different enrichment history. Finally, we introduce colour-metallicity relations based on the infrared Calcium triplet, which are clearly non-linear when compared to $(g^prime-i^prime)$ and $(g^prime-z^prime)$ colours.

Download