Do you want to publish a course? Click here

HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star

238   0   0.0 ( 0 )
 Added by Javier Alcolea
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

To gain insight into the physical conditions and kinematics of the warm (100-1000 K) gas around the red hyper-giant VY CMa, we performed sensitive high spectral resolution observations of molecular lines in the sub-mm/FIR using the HIFI instrument of the Herschel Space Observatory. We observed CO, H2O, and other molecular species, sampling excitation energies from a few tens to a few thousand K. These observations are part of the Herschel Guaranteed Time Key Program HIFISTARS. We detected the J=6-5, J=10-9, and J=16-15 lines of 12CO and 13CO at about 100, 300, and 750K above the ground state (and the 13CO J=9-8 line). These lines are crucial for improving the modelling of the internal layers of the envelope around VY CMa. We also detected 27 lines of H2O and its isotopomers, and 96 lines of species such as NH3, SiO, SO, SO2 HCN, OH and others, some of them originating from vibrationally excited levels. Three lines were not unambiguously assigned. Our observations confirm that VY CMas envelope must consist of two or more detached components. The molecular excitation in the outer layers is significantly lower than in the inner ones, resulting in strong self-absorbed profiles in molecular lines that are optically thick in this outer envelope, for instance, low-lying lines of H2O. Except for the most abundant species, CO and H2O, most of the molecular emission detected at these sub-mm/FIR wavelengths arise from the central parts of the envelope. The spectrum of VY CMa is very prominent in vibrationally excited lines, which are caused by the strong IR pumping present in the central regions. Compared with envelopes of other massive evolved stars, VY CMas emission is particularly strong in these vibrationally excited lines, as well as in the emission from less abundant species such as H13CN, SO, and NH3.

rate research

Read More

Titanium dioxide, TiO$_2$, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO$_2$ has been detected only in the complex environment of the red supergiant VY CMa. We aim to constrain the distribution and excitation of TiO$_2$ around VY CMa in order to clarify its role in dust formation. We analyse spectra and channel maps for TiO$_2$ extracted from ALMA science verification data. We detect 15 transitions of TiO$_2$, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO$_2$ emission likely traces gas exposed to the stellar radiation field. A roughly east-west oriented, accelerating bipolar-like structure is found, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO$_2$ remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.
Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.
CONTEXT: Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. AIMS: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho water vapour. METHODS: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km/s, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-meter telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. RESULTS:We report the first astronomical detection to date of water vapour maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected asymmetrically from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
We report the first identification of the optical bands of the B-X system of AlO in the red supergiant VY CMa. In addition to TiO, VO, ScO, and YO, which were recognized in the optical spectrum of the star long time ago, AlO is another refractory molecule which displays strong emission bands in this peculiar star. Simulating the bands of AlO, we derive a rotational temperature of the circumstellar gas of Trot=700K. By resolving individual rotational components of the bands, we derive the kinematical characteristics of the gas, finding that the emission is centered at the stellar radial velocity and its intrinsic width is 13.5 km/s (full width at half maximum). It is the narrowest emission among all (thermal) features observed in VY CMa so far. The temperature and line widths suggest that the emission arises in gas located within ~20 stellar radii, where the outflow is still being accelerated. This result contradicts equilibrium-chemistry models which predict substantial AlO abundances only to within a few stellar radii. We argue that non-equilibrium models involving propagation of shocks are needed to explain the observations.
102 - T. Kaminski 2013
A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array. Two hundred twenty three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features is presented. Observations of each line with a synthesized beam of ~0.9 arcsec, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high excitation molecular gas (the star) are separated by about 0.15 arcsec. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا