The XMM-Newton spectrum of a candidate recoiling supermassive black hole: an elusive inverted P-Cygni profile


Abstract in English

We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black holes showing also an inverted P-Cygni profile in the X- ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3sigma in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material inflowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decreased of ~20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW<162 keV. Extensive Monte Carlo simulations show that the non detection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as recoiling SMBH, the absorption line can be interpreted as due to inflow of gas with variable density and located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

Download