Do you want to publish a course? Click here

XIPE: the X-ray Imaging Polarimetry Explorer

149   0   0.0 ( 0 )
 Added by Paolo Soffitta
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).



rate research

Read More

The dynamics, energetics and evolution of pulsar wind nebulae (PWNe) and supernova remnants (SNRs), are strongly affected by their magnetic field strength and distribution. They are usually strong, extended, sources of non-thermal X-ray radiation, producing intrinsically polarised radiation. The energetic wind around pulsars produces a highly-magnetised, structured flow, often displaying a jet and a torus and different features (i.e. wisps, knots). This magnetic-dominant wind evolves as it moves away from the pulsar magnetosphere to the surrounding large-scale nebula, becoming kinetic-dominant. Basic aspects such how this conversion is produced, or how the jets and torus are formed, as well as the level of turbulence in the nebula are still unknown. Likewise, the processes ruling the acceleration of particles in shell-like SNRs up to 1e15 eV, including the amplification of the magnetic field, are not clear yet. Imaging polarimetry in this regard is crucial to localise the regions of shock acceleration and to measure the strength and the orientation of the magnetic field at these emission sites. X-ray polarimetry with the X-ray Imaging Polarimetry Explorer (XIPE) will allow the understanding of the magnetic field structure and intensity on different regions in SNRs and PWNe, helping to unveil long-standing questions such as i.e. acceleration of cosmic rays in SNRs or magnetic-to-kinetic energy transfer. SNRs and PWNe also represent the largest population of Galactic very-high energy gamma-ray sources, therefore the study of their magnetic distribution with XIPE will provide fundamental ingredients on the investigation of those sources at very high energies. We will discuss the physics case related to SNRs and PWNe and the expectations of the XIPE observations of some of the most prominent SNRs and PWNe.
While X-ray Spectroscopy, Timing and Imaging have improved verymuch since 1962, when the first astronomical non-solar source was discovered, especially with the launch of Newton/X-ray Multi-Mirror Mission, Rossi/X-ray Timing Explorer and Chandra/Advanced X-ray Astrophysics Facility, the progress of X-ray polarimetry has been meager. This is in part due to the lack of sensitive polarization detectors, in part due to the fate of approved missions and in part because the celestial X-ray sources appeared less polarized than expected. Only one positive measurement has been available until now. Indeed the eight Orbiting Solar Observatory measured the polarization of the Crab nebula in the 70s. The advent of techniques of microelectronics allowed for designing a detector based on the photoelectric effect in gas in an energy range where the optics are efficient in focusing X-rays. Herewe describe the Instrument, which is the major contribution of the Italian collaboration to the SmallExplorer mission called IXPE, the Imaging X-ray Polarimetry Explorer, which will be flown in late 2021. The instrument, is composed of three Detector Units, based on this technique, and a Detector Service Unit. Three Mirror Modules provided by Marshall Space Flight Center focus X-rays onto the detectors. In the following we will show the technological choices, their scientific motivation and the results from the calibration of the Instrument. IXPE will perform imaging, timing and energy resolved polarimetry in the 2-8 keV energy band opening this window of X-ray astronomy to tens of celestial sources of almost all classes.
The NASA/ASI Imaging X-ray Polarimetry Explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved X-ray polarimetry on several astronomical sources in the 2-8 keV energy band. These measurements are made possible owing to the use of a gas pixel detector (GPD) at the focus of three X-ray telescopes. The GPD allows simultaneous measurements of the interaction point, energy, arrival time, and polarization angle of detected X-ray photons. The increase in sensitivity, achieved 40 years ago, for imaging and spectroscopy with the Einstein satellite will thus be extended to X-ray polarimetry for the first time. The characteristics of gas multiplication detectors are subject to changes over time. Because the GPD is a novel instrument, it is particularly important to verify its performance and stability during its mission lifetime. For this purpose, the spacecraft hosts a filter and calibration set (FCS), which includes both polarized and unpolarized calibration sources for performing in-flight calibration of the instruments. In this study, we present the design of the flight models of the FCS and the first measurements obtained using silicon drift detectors and CCD cameras, as well as those obtained in thermal vacuum with the flight units of the GPD. We show that the calibration sources successfully assess and verify the functionality of the GPD and validate its scientific results in orbit; this improves our knowledge of the behavior of these detectors in X-ray polarimetry.
113 - H. Krawczynski 2010
X-ray polarimetry promises to give qualitatively new information about high-energy sources. Examples of interesting source classes are binary black hole systems, rotation and accretion powered neutron stars, Microquasars, Active Galactic Nuclei and Gamma-Ray Bursts. Furthermore, X-ray polarimetry affords the possibility for testing fundamental physics, e.g. to observe signatures of light bending in the strong gravitational field of a black hole, to detect third order Quantum Electrodynamic effects in the magnetosphere of Magnetars, and to perform sensitive tests of Lorentz Invariance. In this paper we discuss scientific drivers of hard (>10 keV) X-ray polarimetry emphasizing how observations in the hard band can complement observations at lower energies (0.1 - 10 keV). Subsequently, we describe four different technical realizations of hard X-ray polarimeters suitable for small to medium sized space borne missions, and study their performance in the signal-dominated case based on Monte Carlo simulations. We end with confronting the instrument requirements for accomplishing the science goals with the capabilities of the four polarimeters.
Much of the baryonic matter in the Universe, including the most active and luminous sources, are best studied in the X-ray band. Key advances in X-ray optics and detectors have paved the way for the Advanced X-ray Imaging Satellite (AXIS), a Probe-class mission that is a major improvement over Chandra, which has generated a steady stream of important discoveries for the past 2 decades. AXIS can be launched in the late 2020s and will transform our understanding in several major areas of astrophysics, including the growth and fueling of supermassive black holes, galaxy formation and evolution, the microphysics of cosmic plasmas, the time-variable universe, and a wide variety of cutting-edge studies. Relative to Chandra, the AXIS PSF is nearly twice as sharp on-axis; its field of view for subarcsecond imaging 70 times larger by area; its effective area at 1 keV is 10 times larger. The low-Earth orbit ensures a low and stable detector background, resulting in 50 times greater sensitivity than Chandra for extended sources. AXIS has a rapid repointing response with operations similar to Swift, but is 100 times more sensitive for time-domain science. These capabilities open up a vast discovery space and complement the next generation of astronomical observatories. A high-spectral-resolution mission (Athena) operating at the same time as a high-angular-resolution mission (AXIS) greatly increases the range of scientific discovery. AXIS will use lightweight X-ray optics made of thin single-crystal silicon mirrors developed at NASA Goddard. The detector array builds on a long legacy of X-ray CCD and provides improved photon localization, much faster readout time, and broader energy band. The estimated mission costs are consistent with the $1B Probe mission cost guideline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا