Do you want to publish a course? Click here

Inflation, Leptogenesis, and Yukawa Quasi-Unification within a Supersymmetric Left-Right Model

233   0   0.0 ( 0 )
 Added by C. Pallis
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by non-thermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.



rate research

Read More

220 - C. Pallis , N. Toumbas 2011
We consider a supersymmetric (SUSY) Grand Unified Theory (GUT) based on the gauge group G_PS=SU(4)_C x SU(2)_L x SU(2)_R, which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the Higgs fields involved in the spontaneous breaking of G_PS. The inflationary model relies on renormalizable superpotetial terms and does not lead to overproduction of magnetic monopoles. It is largely independent of the one-loop radiative corrections and can become consistent with the current observational data on the inflationary observables, with the symmetry breaking scale of G_PS assuming its SUSY value. Within our model, the strong CP and the mu problems of the minimal supersymmetric standard model can be resolved via a Peccei-Quinn symmetry. Moreover baryogenesis occurs via non-thermal leptogenesis realized by the out-of-equilibrium decay of the right-handed neutrinos, which are produced by the inflatons decay. We consider t
We analyze the parametric space of the constrained minimal supersymmetric standard model with mu>0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the universe and its direct detection experiments, the B-physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson. Fixing the mass of the latter to its central value from the LHC and taking 40<=tanbeta<=50, we find a relatively wide allowed parameter space with -11<=A_0/M_{1/2}<=15 and mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments. The required fine-tuning for the electroweak symmetry breaking is much milder than the one needed in the neutralino-stau coannihilation region of the same model.
We propose that the observed matter-antimatter asymmetry can be naturally produced as a byproduct of axion-driven slow-roll inflation by coupling the axion to standard-model neutrinos. We assume that GUT scale right-handed neutrinos are responsible for the masses of the standard model neutrinos and that the Higgs field is light during inflation and develops a Hubble scale vacuum expectation value (VEV). In this set up, the rolling axion generates a helicity asymmetry in standard-model neutrinos. Following inflation, this helicity asymmetry becomes equal to a net lepton number as the Higgs VEV decays and is partially re-processed by the $SU(2)_{L}$ sphaleron into a net baryon number.
We analyze the parametric space of the constrained minimal supersymmetric standard model (CMSSM) with mu>0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the universe and its direct detection experiments, the B-physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson, m_h. We identify two distinct allowed regions with M_{1/2}>m_0 and m_0>>M_{1/2} classified in the hyperbolic branch of the radiative electroweak symmetry breaking. In the first region we obtain, approximately, 44<=tan beta<=52, -3<=A_0/M_{1/2}<=0.1, 122<=m_h/GeV<=127, and mass of the lightest sparticle in the range (0.75-1.43) TeV. Such heavy lightest sparticle masses can become consistent with the cold dark matter requirement on the lightest sparticle relic density thanks to neutralino-stau coannihilations. In the latter region, fixing m_h to its central value from the LHC, we find a wider allowed parameter space with milder electroweak-symmetry-breaking fine-tuning, 40<=tanbeta<=50, -11<=A_0/M_{1/2}<=15 and mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments.
The presence of domain walls separating regions of unbroken $SU(2)_L$ and $SU(2)_R$ is shown to provide necessary conditions for leptogenesis which converts later to the observed Baryon aymmetry. The strength of lepton number violation is related to the majorana neutrino mass and hence related to current bounds on light neutrino masses. Thus the observed neutrino masses and the Baryon asymmetry can be used to constrain the scale of Left-Right symmetry breaking.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا