We have obtained CCD photometry and medium-resolution spectroscopy of a number of $delta$ Scuti and $gamma$ Doradus stars in the Kepler field-of-view as part of the ground-based observational efforts to support the textit{Kepler} space mission. In this work we present the preliminary results of these observations.
Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a roAp star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 cycles/day is also clearly present. Multiperiodic gamma Doradus and delta Scuti pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since gamma Doradus pulsations are seen in Ap stars, it is likely that the low-frequency in KIC 8677585 is also a gamma Doradus pulsation. The simultaneous presence of both gamma Doradus and roAp pulsations and the unexpected detection of delta Scuti and gamma Doradus pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars.
We investigate the pulsation properties of stellar models representative of $delta$ Scuti and $gamma$ Doradus variables. We have calculated a grid of stellar models from 1.2 to 2.2 M$_{odot}$, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss observable patterns in the frequency spacing for $p$ modes and the period spacings for g modes. Using the observable patterns in g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid, and investigate the variation with convective overshoot and rotation. The variation in Q values of radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. As a test case, we apply this method to a sample of 22 high amplitude $delta$ Scuti stars (HADS), and provide estimates for the convective overshoot of the sample.
If Gamma Dor-type pulsations are driven by the convective blocking mechanism, a convective envelope at a sufficient depth is essential. There are several hot Gamma Dor and hybrid star candidates in which there should not be an adequate convective envelope to excite the{gamma}Dor-type oscillations. The existence of these hot objects needs an explanation. Therefore, we selected, observed and studied 24 hot{gamma}Dor and hybrid candidates to investigate their properties. The atmospheric parameters, chemical abundances and vsini values of the candidates were obtained using medium-resolution (R= 46 000)spectra taken with the FIES instrument mounted at the NordicOptical Telescope. We also carried out frequency analyses of theKeplerlong- and short-cadence data to determine the exact pulsation contents. We found only five bona-fide hot{gamma}Dor and three bona-fide hot hybrid stars in our sample. The other 16 stars were found to benormal{gamma}Dor,{delta}Sct, or hybrid variables. No chemical peculiarity was detected in the spectra of the bona-fide hot{gamma}Dor and hybrid stars. We investigated the interplay between rotation and pulsational modes. We also found that the hot{gamma}Dor stars havehigherGaialuminosities and larger radii compared to main-sequence A-F stars.
Context: Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low-radial-order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most delta Scuti stars also show long-period light variations represents a real challenge for theory. Methods: Fourier analysis of all the available Kepler light curves. Investigation of the frequency and period spacings. Determination of the stellar physical parameters from spectroscopic observations. Modelling of the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 c/d. The light variations are dominated by the beating of two dominant frequencies located at around 4 c/d. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v~70 km/s, i > 70 deg) or a fast rotator (v~200 km/s) with i~20 deg. The transit analysis disclosed that the transit events which occur with a ~197 c/d period may be caused by a 1.6 R_Jup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.
Gamma Doradus are F-type stars pulsating with high order g-modes. Their instability strip (IS) overlaps the red edge of the delta Scuti one. This observation has led to search for objects in this region of the HR diagram showing p and g-modes simultaneously. The existence of such hybrid pulsators has recently been confirmed (Handler 2009) and the number of candidates is increasing (Matthews 2007). From a theoretical point of view, non-adiabatic computations including a time-dependent treatment of convection (TDC) predict the existence of gamma Dor/delta Sct hybrid pulsators (Dupret et al. 2004; Grigahcene et al. 2006). Our aim is to confront the properties of the observed hybrid candidates with the theoretical predictions from non-adiabatic computations of non-radial pulsations including the convection-pulsation interaction.
L. Fox-Machado
.
(2013)
.
"Stromgren photometry and medium-resolution spectroscopy of some $delta$ Scuti and $gamma$ Doradus in the Kepler field"
.
Lester Fox Machado Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا