No Arabic abstract
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
The influence of hydrodynamic interactions on lane formation of oppositely charged driven colloidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-Prager level of the mobility tensor. Two cases are considered, namely sedimentation and electrophoresis. In the latter case the Oseen contribution to the mobility tensor is screened due to the opposite motion of counterions. The simulation results are compared to that resulting from simple Brownian dynamics where hydrodynamic interactions are neglected. For sedimentation, we find that hydrodynamic interactions strongly disfavor laning. In the steady-state of lanes, a macroscopic phase separation of lanes is observed. This is in marked contrast to the simple Brownian case where a finite size of lanes was obtained in the steady-state. For strong Coulomb interactions between the colloidal particles a lateral square lattice of oppositely driven lanes is stable similar to the simple Brownian dynamics. In an electric field, on the other hand, the behavior is found in qualitative and quantitative accordance with the case of neglected hydrodynamics.
Self-propelled phoretic colloids have recently emerged as a promising avenue for the design of artificial swimmers. These swimmers combine purely phoretic interactions with intricate hydrodynamics which critically depend on the swimmer shape. Thermophobic dimer shaped colloids are here investigated by means of hydrodynamic simulations, from the single particle motion to their collective behavior. The combination of phoretic repulsion with hydrodynamic lateral attraction favors the formation of planar moving clusters. The resulting hydrodynamic assembly in flattened swarms is therefore very specific to these dimeric active colloids.
Two identical particles driven by the same steady force through a viscous fluid may move relative to one another due to hydrodynamic interactions. The presence or absence of this relative translation has a profound effect on the dynamics of a driven suspension consisting of many particles. We consider a pair of particles which, to linear order in the force, do not interact hydrodynamically. If the system possesses an intrinsic property (such as the shape of the particles, their position with respect to a boundary, or the shape of the boundary) which is affected by the external forcing, hydrodynamic interactions that depend nonlinearly on the force may emerge. We study the general properties of such nonlinear response. Analysis of the symmetries under particle exchange and under force reversal leads to general conclusions concerning the appearance of relative translation and the motions time-reversibility. We demonstrate the applicability of the conclusions in three specific examples: (a) two spheres driven parallel to a wall; (b) two deformable objects driven parallel to their connecting line; and (c) two spheres driven along a curved path. The breaking of time-reversibility suggests a possible use of nonlinear hydrodynamic interactions to disperse or assemble particles by an alternating force.
Assemblies of purely repulsive and frictionless particles, such as emulsions or hard spheres, display very curious properties near their jamming transition, which occurs at the random close packing for mono-disperse spheres. Although such systems do not contain the long and cross-linked polymeric chains characterizing a rubber, they behave macroscopically in a similar way: the shear modulus $G$ can become infinitely smaller than the bulk modulus $B$. After reviewing recent theoretical results on the structure of such packing (in particular their coordination) I will propose an explanation for the observed scaling of the elastic moduli, and explain why the arguments both apply to soft and hard particles.
The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecular weight microions, and colloidal macroions with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of nonlinear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that is saturated with carbon dioxide under standard atmosphere. The only input required for our theoretical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high numerical efficiency.