No Arabic abstract
Recently a new observable to study halo nuclei was introduced, based on the ratio between breakup and elastic angular cross sections. This new observable is shown by the analysis of specific reactions to be independent of the reaction mechanism and to provide nuclear-structure information of the projectile. Here we explore the details of this ratio method, including the sensitivity to binding energy and angular momentum of the projectile. We also study the reliability of the method with breakup energy. Finally, we provide guidelines and specific examples for experimentalists who wish to apply this method.
We present a new observable to study halo nuclei. This new observable is a particular ratio of angular distributions for elastic breakup and scattering. For one-neutron halo nuclei, it is shown to be independent of the reaction mechanism and to provide significant information about the structure of the projectile, including binding energy, partial-wave configuration, and radial wave function of the halo. This observable offers new capabilities for the study of nuclear structure far from stability.
For one-neutron halo nuclei, the cross section for elastic scattering and breakup at intermediate energy exhibit similar angular dependences. The Recoil Excitation and Breakup (REB) model of reactions elegantly explains this feature. It also leads to the idea of a new reaction observable to study the structure of loosely-bound nuclear systems: the Ratio. This observable consists of the ratio of angular distributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism; in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction. This new observable is very sensitive to the structure of the projectile. In this article, we review the Ratio Method and its extension to low beam energies and proton-halo nuclei.
Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam energy. A 10Be(d,p) measurement at Ed greater than 25 MeV is necessary to investigate the effects of core excitation in the reaction.
The tunneling of composite systems, where breakup may occur during the barrier penetration process is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at near and below the Coulomb barrier energies. However, clear evidence for the halo enhancements, seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus $^{6}$He with the actinide nucleus $^{238}$U is significantly enhanced compared to the fusion of a no-halo $^{6}$He. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement was also observed in the $^{6}$He + $^{209}$% Bi system. The role of the corresponding easily excitable low lying dipole pygmy resonance in these systems is therefore significant. The consequence of this overall enhanced fusion of halo nuclei at sub-barrier energies, on stellar evolution and nucleosynthesis is evident.
About half of the heavy elements in the Solar System were created by rapid neutron capture, or r-process, nucleosynthesis. In the r-process, heavy elements are built up via a sequence of neutron captures and beta decays in which an intense neutron flux pushes material out towards the neutron drip line. The nuclear network simulations used to test potential astrophysical scenarios for the r-process therefore require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for thousands of nuclei far from stability. Only a small fraction of this data has been experimentally measured. Here we discuss recent sensitivity studies that aim to determine the nuclei whose properties are most crucial for r-process calculations.