No Arabic abstract
Without violating causality, we allow performing measurements in time reverse process of a feedback manipulated stochastic system. As a result we come across an entropy production due to the measurement process. This entropy production, in addition to the usual system and medium entropy production, constitutes the total entropy roduction of the combined system of the reservoir, the system and the feedback controller. We show that this total entropy production of full system satisfies an integrated fluctuation theorem as well as a detailed fluctuation theorem as expected. We illustrate and verify this idea through explicit calculation and direct simulation in two examples.
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium effective temperature. Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by ATP hydrolysis illustrate these points.
The fluctuations of a Markovian jump process with one or more unidirectional transitions, where $R_{ij} >0$ but $R_{ji} =0$, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically, and found to show the same qualitative features as in systems exhibiting microreversibility.
When nano-magnets are coupled to random external sources, their magnetization becomes a random variable, whose properties are defined by an induced probability density, that can be reconstructed from its moments, using the Langevin equation, for mapping the noise to the dynamical degrees of freedom. When the spin dynamics is discretized in time, a general fluctuation-dissipation theorem, valid for non-Markovian noise, can be established, even when zero modes are present. We discuss the subtleties that arise, when Gilbert damping is present and the mapping between noise and spin degrees of freedom is non--linear.
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
We present a stochastic approach for ion transport at the mesoscopic level. The description takes into account the self-consistent electric field generated by the fixed and mobile charges as well as the discrete nature of these latter. As an application we study the noise in the ion transport process, including the effect of the displacement current generated by the fluctuating electric field. The fluctuation theorem is shown to hold for the electric current with and without the displacement current.