Do you want to publish a course? Click here

Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

153   0   0.0 ( 0 )
 Added by Michela D'Agostino
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A about 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible preequilibrium emissions from 300 to 600 MeV bombarding energy.



rate research

Read More

54 - E. Vient , L. Augey , B. Borderie 2017
In the domain of Fermi energy, the hot nucleus temperature can be determined by using the energy spectra of evaporated light charged particles. But this method of measurement is not without difficulties both theoretical and experimental. The presented study aims to disentangle the respective influences of different factors on the quality of this measurement : the physics, the detection (a 4? detector array as INDRA) and the experimental procedure. This analysis demonstrates the possibility of determining from an energy spectrum, with an accuracy of about 10 %, the true apparent temperature felt by a given type of particle emitted by a hot nucleus. Three conditions are however necessary : have a perfect detector of particles, an important statistics and very few secondary emissions. According to the GEMINI event generator, for hot nuclei of intermediate mass, only deuterons and tritons could fill these conditions. This temperature can allow to trace back to the initial temperature by using an appropriate method. This determination may be better than 15 %. With a real experimental device, an insufficient angular resolution and topological distortions caused by the detection can damage spectra to the point to make very difficult a correct determination of the apparent temperature. The experimental reconstruction of the frame of the hot nucleus may also be responsible for this deterioration
A novel method was developed for the extraction of short emission times of light particles from the projectile-like fragments in peripheral deep-inelastic collisions in the Fermi energy domain. We have taken an advantage of the fact that in the external Coulomb field particles are evaporated asymmetrically. It was possible to determine the emission times in the interval 50-500 fm/c using the backward emission anisotropy of alpha-particles relative to the largest residue, in the reaction 28Si + 112Sn at 50 MeV/nucleon. The extracted times are consistent with predictions based on the evaporation decay widths calculated with the statistical evaporation model generalized for the case of the Coulomb interaction with the target.
The investigation of the d, 3H and 3He spin structure has been performed at the RIKEN(Japan) accelerator research facility and VBLHEP(JINR) using both polarized and unpolarized deuteron beams. The experimental results on the analyzing powers studies in dp- elastic scattering, d(d,3H)p and d(d,3He)n reactions are presented. The vector and tensor analyzing powers for dp-elastic scattering at 880 and 2000 MeV are obtained at the Nuclotron(VBLHEP). The result on the analyzing powers Ay, Ayy of the deuteron at 2000 MeV are compared with relativistic multiple scattering model calculations. The data on the tensor analyzing powers for the d(d,3H)p and d(d,3He)n reactions obtained at Ed = 200 and 270 MeV demonstrate the sensitivity to the 3H, 3He and deuteron spin structure. The essential disagreements between the experimental results and the theoretical calculations within the one-nucleon exchange model framework are observed. The wide experimental program on the study of the polarization effects in dp- elastic scattering, dp-nonmesonic breakup, d(d,3He)n, d(d,3H)p and d(3He,4He)p reactions using internal and extracted beam at Nuclotron is discussed.
A study of fusion-evaporation and (partly) fusion-fission channels for the $^{88}$Mo compound nucleus, produced at different excitation energies in the reaction $^{48}$Ti + $^{40}$Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted $alpha$-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the compound nucleus formation.
Decay modes of excited nuclei are investigated in $^{78,82}$Kr + $^{40}$Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the $4pi$ INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 $le Z le$ 28 indicate a high degree of relaxation and are compatible with a fission-like phenomenon. Persistence of structure effects is evidenced from elemental cross-sections ($sigma_{Z}$) as well as a strong odd-even-staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that the light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross-section of the $^{78}$Kr + $^{40}$Ca reaction is slightly higher than the one measured in $^{82}$Kr + $^{40}$Ca reaction. The fission-like component is larger by $sim$ 25% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to $Z$ = 14 in their ground states as well as excited states does not account for the main features of $sigma_{Z}$. For both reactions, the transition-state formalism reasonably reproduces the $Z$-distribution of the fragments with charge 12 $le Z le$ 28. However, this model strongly overestimates the light-fragment cross-sections and does not explain the o-e-s of the yields for 6 $le Z le$ 10. The shape of the whole $Z$-distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition between evaporation, fusion-fission and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly populated by fusion. An underestimation of the cross sections for 16 $le Z le$ 22 could signal a mechanism in addition to the capture process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا