Do you want to publish a course? Click here

Comment on Coherent Electron Cooling

114   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the method of Coherent Electron Cooling with Enhanced Optical Cooling. According to our estimations the Enhanced Optical Cooling method demonstrates some advantage for parameters of LHC.



rate research

Read More

We present analytic cooling and diffusion rates for a simplified model of coherent electron cooling (CEC), based on a proton energy kick at each turn. This model also allows to estimate analytically the rms value of electron beam density fluctuations in the kicker section. Having such analytic expressions should allow for better understanding of the CEC mechanism, and for a quicker analysis and optimization of main system parameters. Our analysis is applicable to any CEC amplification mechanism, as long as the wake (kick) function is available.
Increasing the luminosity of relativistic hadron beams is critical for the advancement of nuclear physics. Coherent electron cooling (CEC) promises to cool such beams significantly faster than alternative methods. We present simulations of 40 GeV/nucleon Au+79 ions through the first (modulator) section of a coherent electron cooler. In the modulator, the electron beam copropagates with the ion beam, which perturbs the electron beam density and velocity via anisotropic Debye shielding. In contrast to previous simulations, where the electron density was constant in time and space, here the electron beam has a finite transverse extent, and undergoes focusing by quadrupoles as it passes through the modulator. The peak density in the modulator increases by a factor of 3, as specified by the beam Twiss parameters. The inherently 3D particle and field dynamics is modeled with the parallel VSim framework using a $delta$f PIC algorithm. Physical parameters are taken from the CEC proof-of-principle experiment under development at Brookhaven National Lab.
The initial modulation in the scheme for Coherent electron Cooling (CeC) rests on the screening of the ion charge by electrons. However, in a CeC system with a bunched electron beam, inevitably, a long-range longitudinal space charge force is introduced. For a relatively dense electron beam, its force can be comparable to, or even greater than the attractive force from the ions. Hence, the influence of the space charge field on the modulation process could be important. If the 3-D Debye lengths are much smaller than the extension of the electron bunch, the modulation induced by the ion happens locally. Then, in that case, we can approximate the long-range longitudinal space charge field as a uniform electric field across the region. As detailed in this paper, we developed an analytical model to study the dynamics of ion shielding in the presence of a uniform electric field. We solved the coupled Vlasov-Poisson equation system for an infinite anisotropic electron plasma, and estimated the influences of the longitudinal space charge field to the modulation process for the experimental proof of the CeC principle at RHIC.
101 - V.M. Biryukov 2007
Tabrizi et al. [physics/0701342] discuss the feasibility of an electron-based crystal undulator (e-CU) by planar channeling of 50 GeV electrons through a periodically bent crystal. We show that their scheme is not feasible. First, their undulator parameter is K >> 1 always, which destroys photon interference. Second, they overestimate the electron dechanneling length in e-CU by an order of magnitude, which shortens the number N of e-CU periods from 5-15 (as they hope) to just 1-2. This kills their e-CU concept again. We made first simulation of electron channeling in undulated crystal and conclude that an electron-based crystal wiggler is feasible with wiggler strength K=10 and number of periods N=2.
In this brief report we pointed at mistake in paper A. Zholents, Damping Force in the Transit-Time Method of Optical Stochastic Cooling, PRLST. Mar 1, 2012. 2 pp. Published in Phys.Rev.ST Accel. Beams 15 (2012) 032801.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا