Do you want to publish a course? Click here

Ramanujans $_1psi_1$ summation theorem --- perspective, announcement of bilateral $q$-Dixon--Anderson and $q$-Selberg integral extensions, and context

119   0   0.0 ( 0 )
 Added by Masahiko Ito
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The Ramanujan $_1psi_1$ summation theorem in studied from the perspective of $q$-Jackson integrals, $q$-difference equations and connection formulas. This is an approach which has previously been shown to yield Baileys very-well-poised $_6psi_6$ summation. Bilateral Jackson integral generalizations of the Dixon--Anderson and Selberg integrals relating to the type $A$ root system are identified as natural candidates for multidimensional generalizations of the Ramanujan $_1psi_1$ summation theorem. New results of this type are announced, and furthermore they are put into context by reviewing from previous literature explicit product formulas for Jackson integrals relating to other roots systems obtained from the same perspective.



rate research

Read More

The Dixon--Anderson integral is a multi-dimensional integral evaluation fundamental to the theory of the Selberg integral. The $_1psi_1$ summation is a bilateral generalization of the $q$-binomial theorem. It is shown that a $q$-generalization of the Dixon--Anderson integral, due to Evans, and multi-dimensional generalizations of the $_1psi_1$ summation, due to Milne and Gustafson, can be viewed as having a common origin in the theory of $q$-difference equations as expounded by Aomoto. Each is shown to be determined by a $q$-difference equation of rank one, and a certain asymptotic behavior. In calculating the latter, essential use is made of the concepts of truncation, regularization and connection formulae.
156 - XiaoHuang Huang 2020
In this paper, we study the uniqueness of zero-order entire functions and their difference. We have proved: Let $f(z)$ be a nonconstant entire function of zero order, let $q eq0, eta$ be two finite complex numbers, and let $a$ and $b$ be two distinct complex numbers. If $f(z)$ and $Delta_{q,eta}f(z)$ share $a$, $b$ IM, then $fequiv Delta_{q,eta}f$.
The evaluation formula for an elliptic beta integral of type $G_2$ is proved. The integral is expressed by a product of Ruijsenaars elliptic gamma functions, and the formula includes that of Gustafsons $q$-beta integral of type $G_2$ as a special limiting case as $pto 0$. The elliptic beta integral of type $BC_1$ by van Diejen and Spiridonov is effectively used in the proof of the evaluation formula.
We consider a family of solutions of $q-$difference Riccati equation, and prove the meromorphic solutions of $q-$difference Riccati equation and corresponding second order $q-$difference equation are concerning with $q-$gamma function. The growth and value distribution of differences on solutions of $q-$difference Riccati equation are also investigated.
In this article we explicitly describe irreducible trinomials X^3-aX+b which gives all the cyclic cubic extensions of Q. In doing so, we construct all integral points (x,y,z) with GCD(y,z)=1, of the curves X^2+3Y^2 = 4DZ^3 and X^2+27Y^2=4DZ^3 as D varies over cube-free positive integers. We parametrise these points using well known parametrisation of integral points (x,y,z) of the curve X^2+3Y^2=4Z^3 with GCD(y,z)=1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا