Do you want to publish a course? Click here

Sulfur annealing effect for superconductivity in iron chalcogenide compounds

307   0   0.0 ( 0 )
 Added by Keita Deguchi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discovered a novel annealing method for Fe-chalcogenide superconductors. It was found that sulfur annealing deintercalated excess Fe via formation of FeS2. Due to its specifics, sulfur annealing is applicable when preparing Fe-chalcogenide-based wires or cables.



rate research

Read More

126 - D.J. Singh , M.H. Du , L. Zhang 2008
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase.
The metal-metal bond in metal-rich chalcogenide is known to exhibit various structures and dominate interesting physical properties. Ta2Se can be obtained by both arc-melting and solid-state pellet methods. Ta2Se crystallizes a layered tetragonal structure with space group P4/nmm (S.G.129, Pearson symbol tP6). Each unit cell consists of four layers of body-centered closed packing Ta atoms sandwiched between two square nets of Se atoms, forming the Se-Ta-Ta-Ta-Ta-Se networks. A combined result of magnetic susceptibility, resistivity, and heat capacity measurements on Ta2Se indicate the bulk superconductivity with Tc = 3.8 (1) K. According to the first-principal calculations, the d orbitals in Ta atoms dominate the Fermi level in Ta2Se. The flat bands at gamma-point in the Brillouin zone (BZ) yield to the van Hove singularities in density of states (DOS) around the Fermi level, which is intensified by introducing spin-orbit coupling (SOC) effect, thus, could be critical for the superconductivity in Ta2Se. The physical properties especially superconductivity is completely different from Ta-rich alloys or transition metal dichalcogenide TaSe2.
247 - I. Felner , O. Wolf , 2013
Following our previous investigations on superconductivity in amorphous carbon (aC) based systems; we have prepared thin composite aC-W films using electron-beam induced deposition. The films did not show any sign for superconductivity above 5 K. However, local, non-percolative, superconductivity emerged at Tc = 34.4 K after treatment with sulfur at 250 C for 24 hours. The superconducting features in the magnetization curves were by far sharper compared to our previous results, and the shielding fraction increased by about an order of magnitude. Our data suggest that pairing and localized superconductivity take place in the aC-S regions, whereas phase coherence, assisted by the W inclusions, was enhanced compared to our previous samples, yet still not to the degree of achieving global phase-coherence and percolating superconductivity.
We demonstrate that the differential conductance, $dI/dV$, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe$_{0.45}$Te$_{0.55}$, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related $C_2$-symmetry in the Fourier transformed differential conductance.
A pronounced local in-gap zero-energy bound state (ZBS) has been observed by recent scanning tunneling microscopy (STM) experiments on the interstitial Fe impurity (IFI) and its nearest-neighboring (nn) sites in $mathrm{FeTe_{0.5}Se_{0.5}}$ superconducting (SC) compound. By introducing a new impurity mechanism, the so-called tunneling impurity, and based on the Bogoliubove-de Gennes (BDG) equations we investigated the low-lying energy states of the IFI and the underlying Fe-plane. We found the peak of ZBS does not shift or split in a magnetic field as long as the tunneling parameter between IFI and the Fe-plane is sufficiently small and the Fe-plane is deep in the SC state. Our results are in good agreement with the experiments. We also predicted that modulation of spin density wave (SDW), or charge density wave (CDW) will suppress the intensity of the ZBS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا