Do you want to publish a course? Click here

Observation of the decay $B_s^0tobar{D}^0phi$

86   0   0.0 ( 0 )
 Added by Stefania Ricciardi
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

First observation of the decay Bs -> D0bar phi is reported using pp collision data, corresponding to an integrated luminosity of 1.0 fb^-1, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The significance of the signal is 6.2 standard deviations. The branching fraction is measured relative to that of the decay Bs -> D0bar K*0bar to be 0.069 +/- 0.013 (stat) +/- 0.007 (syst). The first measurement of the ratio of branching fractions for the decays Bs -> D0bar K*0bar and Bd->D0bar K*0 is found to be 7.8 +/- 0.7 (stat) +/- 0.3 (syst) +/- 0.6 (f_s/f_d), where the last uncertainty is due to the ratio of the Bs and Bd fragmentation fractions.



rate research

Read More

A search for the $B^0_s !rightarrow D^{*pm} D^mp$ decay is performed using proton-proton collision data at centre-of-mass energies of $7$, $8$ and $13,text{TeV}$ collected by the LHCb experiment, corresponding to an integrated luminosity of $9,text{fb}^{-1}$. The decay is observed with a high significance and its branching fraction relative to the $B^0 !rightarrow D^{*pm} D^mp$ decay is measured to be begin{align*} frac{mathcal{B}(B_s^0 rightarrow D^{ast pm} D^{mp}) }{mathcal{B}(B^0 rightarrow D^{ast pm} D^{mp}) } = 0.137 pm 0.017 pm 0.002 pm 0.006 ,, end{align*} where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the $B_s^0$ and $B^0$ hadronisation fractions.
The first observation of the $B_s^0 to overline{D}^0 K^+ K^-$ decay is reported, together with the most precise branching fraction measurement of the mode $B^0 to overline{D}^0 K^+ K^-$. The results are obtained from an analysis of $pp$ collision data corresponding to an integrated luminosity of $3.0~textrm{fb}^{-1}$. The data were collected with the LHCb detector at centre-of-mass energies of $7$ and $8$ TeV. The branching fraction of the $B^0 to overline{D}^0 K^+ K^-$ decay is measured relative to that of the decay $B^0 to overline{D}^0 pi^+ pi^-$ to be $$frac{mathcal{B}(B^0 to overline{D}^0 K^+ K^-)}{mathcal{B}(B^0 to overline{D}^0 pi^+ pi^-)} = (6.9 pm 0.4 pm 0.3)%,$$ where the first uncertainty is statistical and the second is systematic. The measured branching fraction of the $B_s^0 to overline{D}^0 K^+ K^-$ decay mode relative to that of the corresponding $B^0$ decay is $$frac{mathcal{B}(B_s^0 to overline{D}^0 K^+ K^-)}{mathcal{B}(B^0 to overline{D}^0 K^+ K^-)} = (93.0 pm 8.9 pm 6.9)%.$$ Using the known branching fraction of ${B^0 to overline{D}^0 pi^+ pi^-}$, the values of ${{mathcal B}(B^0 to overline{D}^0 K^+ K^- )=(6.1 pm 0.4 pm 0.3 pm 0.3) times 10^{-5}}$, and ${{cal B}(B_s^0 to overline{D}^0 K^+ K^-)=}$ $(5.7 pm 0.5 pm 0.4 pm 0.5) times 10^{-5}$ are obtained, where the third uncertainties arise from the branching fraction of the decay modes ${B^0 to overline{D}^0 pi^+ pi^-}$ and $B^0 to overline{D}^0 K^+ K^-$, respectively.
We report the first observation of a baryonic $B_s^0$ decay, $B_s^0 to p kern 0.1emoverline{kern -0.1emLambda} K^-$, using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of $3.0,mathrm{fb}^{-1}$. The branching fraction is measured to be $ mathcal{B}(B_s^0 to p kern 0.1emoverline{kern -0.1emLambda} K^-) + mathcal{B}(B_s^0 to bar{p} Lambda K^+) = left[5.46 pm 0.61 pm 0.57 pm 0.50 (mathcal{B}) pm 0.32 (f_s/f_d)right]times 10^{-6}, $ where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the $B^0 to p kern 0.1emoverline{kern -0.1emLambda} pi^-$ decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of $b$-quark hadronization probabilities $f_s/f_d$.
We measure the decay $B_s^0rightarrow K^0overline{K}^0$ using data collected at the $Upsilon(5S)$ resonance with the Belle detector at the KEKB $e^+e^-$ collider. The data sample used corresponds to an integrated luminosity of 121.4 ${rm fb^{-1}}$. We measure a branching fraction $mathcal{B}(B_s^0rightarrow K^0overline{K}^0) = [19.6,^{+5.8}_{-5.1}({rm stat.}),pm1.0({rm sys.}),pm 2.0(N^{}_{B_s^0overline{B}_s^0})]times 10^{-6}$ with a significance of 5.1 standard deviations. This measurement constitutes the first observation of this decay.
The $B_s^0 rightarrow J/psi phi phi$ decay is observed in $pp$ collision data corresponding to an integrated luminosity of 3 fb$^{-1}$ recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the $B_s^0$ meson is measured to be $5367.08,pm ,0.38,pm, 0.15$ MeV/c$^2$. The branching fraction ratio $mathcal{B}(B_s^0 rightarrow J/psi phi phi)/mathcal{B}(B_s^0 rightarrow J/psi phi)$ is measured to be $0.0115,pm, 0.0012, ^{+0.0005}_{-0.0009}$. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant $B_s^0 rightarrow J/psi phi K^+ K^-$ or $B_s^0 rightarrow J/psi K^+ K^- K^+ K^-$ decays is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا