We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements.
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model.
We present the Flavour Les Houches Accord (FLHA) which specifies a unique set of conventions for flavour-related parameters and observables. The FLHA uses the generic SUSY Les Houches Accord (SLHA) file structure. It defines the relevant Standard Model masses, Wilson coefficients, decay constants, bag parameters, flavour observables, etc. The accord provides a universal and model-independent interface between codes evaluating and/or using flavour-related observables.
We propose to combine and slightly extend two existing Les Houches Accords to provide a simple generic interface between beyond-the-standard-model parton-level and event-level generators. All relevant information - particle content, quantum numbers of new states, masses, cross sections, parton-level events, etc - is collected in one single file, which adheres to the Les Houches Event File (LHEF) standard.
S. Alioli
,S. Badger
,J. Bellm
.
(2013)
.
"Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs"
.
Gudrun Heinrich
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا