Do you want to publish a course? Click here

Fabrication of nanopores in a graphene sheet with heavy ions: a molecular dynamics study

236   0   0.0 ( 0 )
 Added by Jianming Xue
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular dynamics (MD) simulations were performed to study the formation process of nanopores in a suspended graphene sheet irradiated by using energetic ions though a mask. By controlling the ion parameters including mass, energy and incident angle, different kinds of topography were observed in the graphene sheet. Net-like defective strucutures with carbon atom chains can be formed at low ion fluence, which provides the possibility to functionalize the irradiated sample with subsequent chemical methods; finally a perfect nanopore with smooth edge appears as the ion fluence is high enough. We found that the dependence of ion damage efficiency on ion fluence, energy and incident angle are different from that predicted by the semi-empirical model based on the binary-collision approximation, which results from the special structure of graphene. Our results demonstrate that it is feasible to fabricate controlled nanopores/nanostructures in graphene via heavy ion irradiation.



rate research

Read More

Two experimental studies reported the spontaneous formation of amorphous and crystalline structures of C60 intercalated between graphene and a substrate. They observed interesting phenomena ranging from reaction between C60 molecules under graphene to graphene sagging between the molecules and control of strain in graphene. Motivated by these works, we performed fully atomistic reactive molecular dynamics simulations to study the formation and thermal stability of graphene wrinkles as well as graphene attachment to and detachment from the substrate when graphene is laid over a previously distributed array of C60 molecules on a copper substrate at different values of temperature. As graphene compresses the C60 molecules against the substrate, and graphene attachment to the substrate between C60s (C60s stands for plural of C60) depends on the height of graphene wrinkles, configurations with both frozen and non-frozen C60s structures were investigated in order to verify the experimental result of stable sagged graphene when the distance between C60s is about 4 nm and height of graphene wrinkles is about 0.8 nm. Below the distance of 4 nm between C60s, graphene becomes locally suspended and less strained. We show that this happens when C60s are allowed to deform under the compressive action of graphene. If we keep the C60s frozen, spontaneous blanketing of graphene happens only when the distance between them are equal or above 7 nm. Both above results for the existence of stable sagged graphene for C60 distances of 4 or 7 nm are shown to agree with a mechanical model relating the rigidity of graphene to the energy of graphene-substrate adhesion. In particular, this study might help the development of 2D confined nanoreactors that are considered in literature to be the next advanced step on chemical reactions.
The thermal degradation of a graphene-like two-dimensional triangular membrane with bonds undergoing temperature-induced scission is studied by means of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that the probability distribution of breaking bonds is highly peaked at the rim of the membrane sheet at lower temperature whereas at higher temperature bonds break at random anywhere in the hexagonal flake. The mean breakage time $tau$ is found to decrease with the total number of network nodes $N$ by a power law $tau propto N^{-0.5}$ and reveals an Arrhenian dependence on temperature $T$. Scission times are themselves exponentially distributed. The fragmentation kinetics of the average number of clusters can be described by first-order chemical reactions between network nodes $n_i$ of different coordination. The distribution of fragments sizes evolves with time elapsed from a $delta$-function through a bimodal one into a single-peaked again at late times. Our simulation results are complemented by a set of $1^{st}$-order kinetic differential equations for $n_i$ which can be solved exactly and compared to data derived from the computer experiment, providing deeper insight into the thermolysis mechanism.
The extraordinary properties of graphene make it a very promising material for use in optoelectronics. However, this is still a nascent field, where some basic properties of the electromagnetic field in graphene must be explored. Here we report on the fields radiated by a nanoemitter lying on a graphene sheet. Our results show that this field presents a rich dependence on both frequency, distance to the source and dipole orientation. This behavior is attributed to distinct peculiarities on the density of electromagnetic states in the graphene sheet and the interaction between them. The field is mainly composed of an core region of high-intensity electromagnetic field, dominated by surface plasmons, and an outer region where the field is practically the same it would be for an emitter in vacuum. Within the core region, the intensity of the electric field is several orders of magnitude larger than what it would be in vacuum. Importantly, the size of this core region can be controlled thorough external gates, which opens up many interesting applications in, for instance, surface optics and spectroscopy. Additionally, the large coupling between nanoemitters and surface plasmons makes graphene sheets a propitious stage for quantum-optics, in which the interaction between quantum objects could be externally tailored at will.
The motion of a C60 molecule over a graphene sheet at finite temperature is investigated both theoretically and computationally. We show that a graphene sheet generates a van der Waals laterally periodic potential, which directly influences the motion of external objects in its proximity. The translational motion of a C60 molecule near a graphene sheet is found to be diffusive in the lateral directions. While, in the perpendicular direction, the motion may be described as diffusion in an effective harmonic potential which is determined from the distribution function of the position of the C60 molecule. We also examine the rotational diffusion of C60 and show that its motion over the graphene sheet is not a rolling motion.
The unusual electronic properties of graphene, which are a direct consequence of its two-dimensional (2D) honeycomb lattice, have attracted a great deal of attention in recent years. Creation of artificial lattices that recreate graphenes honeycomb topology, known as artificial graphene, can facilitate the investigation of graphene-like phenomena, such as the existence of massless Dirac fermions, in a tunable system. In this work, we present the fabrication of artificial graphene in an ultra-high quality GaAs/AlGaAs quantum well, with lattice period as small as 50 nm, the smallest reported so far for this type of system. Electron-beam lithography is used to define an etch mask with honeycomb geometry on the surface of the sample, and different methodologies are compared and discussed. An optimized anisotropic reactive ion etching process is developed to transfer the pattern into the AlGaAs layer and create the artificial graphene. The achievement of such high-resolution artificial graphene should allow the observation for the first time of massless Dirac fermions in an engineered semiconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا