The inverse problem for electromagnetic field produced by arbitrary altered charge distribution in dipole approximation is solved. The charge distribution is represented by its dipole moment. It is assumed that the spectral properties of magnetic field of the dipole are known. The position of the dipole and its Fourier components are considered as the unknown quantities. It is assumed that relative increments of amplitude and phase of magnetic field in the vicinity of the observation point are known. The derived results can be used for study of phenomena concerned with occurrence and variation of localized electric charge distribution, when the position and the dynamics of a localized source of electromagnetic field are to be defined.