Recently, Velazquez and Curilef have proposed a methodology to extend Monte Carlo algorithms based on canonical ensemble, which is aimed to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of 2D four-state Potts model on the square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sample is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.