The leptonic asymmetry in semileptonic ttbar decays is measured with the CDF detector using the full Tevatron Run II dataset, which corresponds to 9.4 fb^-1 of integrated luminosity. The measured asymmetry is extrapolated to the full kinematic range and the measured value of A_FB^lep = 0.094^+0.032_-0.029 is compared to the NLO prediction A_FB^lep = 0.038 +/- 0.003.
In this paper we present a precise measurement of the total ZZ production cross section in pp collisions at {surd}s= 1.96 TeV, using data collected with the CDF II detector corresponding to an integrated luminosity of approximately 6 fb-1. The result is obtained by combining separate measurements in the four-charged (llll), and two-charged-lepton and two-neutral-lepton (llvv) decay modes of the Z. The combined measured cross section for pp {to} ZZ is 1.64^(+0.44)_(-0.38) pb. This is the most precise measurement of the ZZ production cross section in 1.96 TeV pp collisions to date.
We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 $rm{fb}^{-1}$, the leptonic forward-backward asymmetry, $A_{text{FB}}^{ell}$, is measured to be $0.072 pm 0.060$ and the leptonic pair forward-backward asymmetry, $A_{text{FB}}^{ellell}$, is measured to be $0.076 pm 0.082$, compared with the standard model predictions of $A_{text{FB}}^{ell} = 0.038 pm 0.003$ and $A_{text{FB}}^{ellell} = 0.048 pm 0.004$, respectively. Additionally, we combine the $A_{text{FB}}^{ell}$ result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{text{FB}}^{ell} = 0.090^{+0.028}_{-0.026}$.
I present measurements of the W boson charge asymmetry and the W boson width G_W using 350 pb-1 of CDF Run II data. The charge asymmetry is the first direct measurement, which uses a new technique to reconstruct the W rapidity by constraining its mass; the result will further constrain Parton Distribution Functions in future fits. The width measurement relies on a fit to the W transverse mass distribution. We measure G_W = 2032 +/- 71 MeV which is in good agreement with the Standard Model prediction.
We present the result of direct leptoquark searches based on 110 pb-1 of integrated luminosity collected by the Collider Detector at Fermilab during the 1992-93 and 1994-95 Tevatron runs at sqrt{s}=1.8 TeV. We present upper limits on the production cross sections as a function of the leptoquark mass. Using the NLO calculation of the leptoquark-pair production cross sections we extract lower-mass limits for first, second and third generation leptoquarks. We also present the result of an indirect search for Pati-Salam leptoquarks via exclusive e-mu decay modes of B^{0}_{s} and B^{0}_{d}.
We report on a measurement of the top-quark electric charge in ttbar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in sqrt(s)=1.96 TeV proton-antiproton collisions and corresponds to 5.6 fb^(-1). We find the data to be consistent with the standard model and exclude the existence of an exotic quark with -4/3 electric charge and mass of the conventional top quark at the 99% confidence level.