Precise shaping of laser light by an acousto-optic deflector


Abstract in English

We present a laser beam shaping method using acousto-optic deflection of light and discuss its application to dipole trapping of ultracold atoms. By driving the acousto-optic deflector with multiple frequencies, we generate an array of overlapping diffraction-limited beams that combine to form an arbitrary-shaped smooth and continuous trapping potential. Confinement of atoms in a flat-bottomed potential formed by a laser beam with uniform intensity over its central region confers numerous advantages over the harmonic confinement intrinsic to Gaussian beam dipole traps and many other trapping schemes.We demonstrate the versatility of this beam shaping method by generating potentials with large flat-topped regions as well as intensity patterns compensating for residual external potentials to create a uniform background to which the trapping potential of experimental interest can be added.

Download