Do you want to publish a course? Click here

Goos-H{a}nchen Shifts of Partially Coherent Light Fields

298   0   0.0 ( 0 )
 Added by Li-Gang Wang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the Goos-H{a}nchen (GH) shifts of partially coherent fields (PCFs) by using the theory of coherence. We derive a formal expression for the GH shifts of PCFs in terms of Mercers expansion, and then clearly demonstrate the dependence of the GH shift of each mode of PCFs on spatial coherence and beam width. We discuss the effect of spatial coherence on the resultant GH shifts, especially for the cases near the critical angles, such as totally reflection angle.



rate research

Read More

We have investigated the tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals, based on the Pockels effect. The positive and negative lateral shifts could be easily controlled by adjusting the permittivity tensor, which is modulated by the external applied electric field. An alternative way to realize the polarization beam splitter was also proposed by the polarization-dependent lateral shifts. Numerical simulations for Gaussian-shaped incident beam have demonstrated the above theoretical results obtained by stationary phase method. All these phenomena have potential applications in optical devices.
535 - Li-Gang Wang 2007
We present a proposal to manipulate the Goos-Hanchen shift of a light beam via a coherent control field, which is injected into a cavity configuration containing the two-level atomic medium. It is found that the lateral shifts of the reflected and transmitted probe beams can be easily controlled by adjusting the intensity and detuning of the control field. Using this scheme, the lateral shift at the fixed incident angle can be enhanced (positive or negative) under the suitable conditions on the control field, without changing the structure of the cavity.
Analyses based on quantum metrology have shown that the ability to localize the positions of two incoherent point sources can be significantly enhanced through the use of mode sorting. Here we theoretically and experimentally investigate the effect of partial coherence on the sub-diffraction limit localization of two sources based on parity sorting. With the prior information of a negative and real-valued degree of coherence, higher Fisher information is obtained than that for the incoherent case. Our results pave the way to clarifying the role of coherence in quantum limited metrology.
Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral density under the space-frequency formulation of statistically stationary partially coherentfields. We also develop expressions for the output cross{spectral density and associated spectral density for weak-phase, weak-phase-amplitude, and single-material objects in one transverse spatial dimension.
234 - Li-Gang Wang 2011
It is shown that the spatial Goos-Hanchen shift is greatly affected by spatial coherence. A typical example is given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا