Do you want to publish a course? Click here

Certifying Separability in Symmetric Mixed States, and Superradiance

205   0   0.0 ( 0 )
 Added by Elie Wolfe
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Separability criteria are typically of the necessary, but not sufficient, variety, in that satisfying some separability criterion, such as positivity of eigenvalues under partial transpose, does not strictly imply separability. Certifying separability amounts to proving the existence of a decomposition of a target mixed state into some convex combination of separable states; determining the existence of such a decomposition is hard. We show that it is effective to ask, instead, if the target mixed state fits some preconstructed separable form, in that one can generate a sufficient separability criterion relevant to all target states in some family by ensuring enough degrees of freedom in the preconstructed separable form. We demonstrate this technique by inducing a sufficient criterion for diagonally symmetric states of N qubits. A sufficient separability criterion opens the door to study precisely how entanglement is (not) formed; we use ours to prove that, counterintuitively, entanglement is not generated in idealized Dicke model superradiance despite its exemplification of many-body effects. We introduce a quantification of the extent to which a given preconstructed parametrization comprises the set of all separable states; for diagonally symmetric states our preconstruction is shown to be fully complete. This implies that our criterion is necessary in addition to sufficient, among other ramifications which we explore.



rate research

Read More

The separable mixed 2-qubit X-states are classified in accordance with degeneracies in the spectrum of density matrices. It is shown that there are four classes of separable X-states, among them: one 4D family, a pair of 2D family and a single, zero-dimensional maximally mixed state.
Uncertainty lower bounds for parameter estimations associated with a unitary family of mixed-state density matrices are obtained by embedding the space of density matrices in the Hilbert space of square-root density matrices. In the Hilbert-space setup the measure of uncertainty is given by the skew information of the second kind, while the uncertainty lower bound is given by the Wigner-Yanase skew information associated with the conjugate observable. Higher-order corrections to the uncertainty lower bound are determined by higher-order quantum skew moments; expressions for these moments are worked out in closed form.
125 - Mohammed Daoud 2018
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d-1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N-qubit vector (in a N-dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d=3 (i.e., N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d=4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS) states. First, we show that separability in the case of DS in $C^dotimes C^d$ (symmetric qudits) can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT) is sufficient and necessary for separability of DS states for $d leq 4$. Furthermore, for $d geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.
310 - Elie Wolfe , S.F. Yelin 2014
We discuss the possibility of generating spin squeezed states by means of driven superradiance, analytically affirming and broadening the finding in [Phys. Rev. Lett. 110, 080502 (2013)]. In an earlier paper [Phys. Rev. Lett. 112, 140402 (2014)] the authors determined that spontaneous purely-dissipative Dicke model superradiance failed to generate any entanglement over the course of the systems time evolution. In this article we show that by adding a driving field, however, the Dicke model system can be tuned to evolve toward an entangled steady state. We discuss how to optimize the driving frequency to maximize the entanglement. We show that the resulting entanglement is fairly strong, in that it leads to spin squeezing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا