No Arabic abstract
The melting curve of Ni up to 100 GPa has been calculated using first principles methods based on density functional theory (DFT). We used two complementary approaches: i) coexistence simulations with a reference system and then free energy corrections between DFT and the reference system, and ii) direct DFT coexistence using simulation cells including 1000 atoms. The calculated zero pressure melting temperature is slightly underestimated at $1637 pm 10$ K (experimental value is 1728 K), and at high pressure is significantly higher than recent measurements in diamond anvil cell experiments [Phys. Rev. B {bf 87}, 054108 (2013)]. The zero pressure DFT melting slope is calculated to be $30 pm 2$ K, in good agreement with the experimental value of 28 K.
We report on first principles Self-Interaction Corrected LSD (SIC-LSD) calculations of electronic structure of LaMnO$_{3}$ in the cubic phase. We found a strong tendency to localisation of the Mn $e_{g}$ electron and to orbital ordering. We found the ground state to be orbitally ordered with a staggered order of $x^{2}-z^{2}$ and $y^{2}-z^{2}$ orbits in one plane and this order is repeated along the third direction. The difference in energy with a solution consisting of the ordering of $3x^{2}-r^{2}$ and $3y^{2}-r^{2}$ is, however, very small. The latter ordering is similar to the one observed both experimentally and theoretically in the real distorted system. The system is in the insulating A-type antiferromagnetic ordered state in both cases. The presence of orbital ordering means breaking of the cubic symmetry and without recourse to distortion. The latter may rather be the result of the orbital ordering but the symmetry of this ordering is determined by coupling to the lattice. The strong tendency to localisation of the $e_{g}$ electron in LaMnO$_{3}$ accounts for the survival of local distortions above the structural phase transition temperature.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different with topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates from asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation. We then implement the theory and calculate the ballistic current of the prototypical BPVE material ch{BaTiO3} using quantum-mechanical density functional theory. The magnitude of the ballistic current is comparable to that of shift current, and the total spectrum (shift plus ballistic) agrees well with the experimentally measured photocurrents. Furthermore, we show that the ballistic current is sensitive to structural change, which could benefit future photovoltaic materials design.
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.
We expand our study on cubic BiFeO$_3$ alloys presented in [K. Koumpouras and I. Galanakis, textit{J. Magn. Magn. Mater} 323, 2328 (2011)] to include also the BiMnO$_3$ and Bi$_2$MnFeO$_6$ alloys. For the latter we considered three different cases of distribution of the Fe-Mn atoms in the lattice and six possible magnetic configurations. We show that Fe and Mn atoms in all cases under study retain a large spin magnetic moment, the magnitude of which exceeds the 3 $mu_B$. Their electronic and magnetic properties are similar to the ones in the parent BiMnO$_3$ and BiFeO$_3$ compounds. Thus oxygen atoms which are the nearest-neighbors of Fe(Mn) atoms play a crucial role since they mediate the magnetic interactions between the transition metal atoms and screen any change in their environment. Finally, we study the effect of lattice contraction on the magnetic properties of Bi$_2$MnFeO$_6$.