No Arabic abstract
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side is a regularized white noise. The deposition rate $V$ is assumed to be isotropic and convex. Assuming $V(0)ge 0$, one finds $V(| abla h|)ltimes | abla h|^2$ for small gradients, yielding the equation which is most commonly used in the literature. The present article is dedicated to existence results and PDE estimates for the solution. Our results extend in a non-trivial way those previously obtained for the noiseless equation. We prove in particular a comparison principle for sub- and supersolutions of the KPZ equation in new functional spaces containing unbounded functions, implying existence and uniqueness. These new functional spaces made up of functions with locally bounded averages, generically called ${cal W}$-spaces thereafter, and which may be of interest for the study of parabolic equations in general, allow local or pointwise estimates. The comparison to the linear heat equation through a Cole-Hopf transform is an essential ingredient in the proofs, and our results are accordingly valid only for a function $V$ with at most quadratic growth at infinity.
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side is a regularized white noise. The deposition rate $V$ is assumed to be isotropic and convex. Assuming $V(0)ge 0$, one finds $V(| abla h|)ltimes | abla h|^2$ for small gradients, yielding the equation which is most commonly used in the literature. The present article, a continuation of [24], is dedicated to a generalization of the PDE estimates obtained in the previous article to the case of a deposition rate $V$ with polynomial growth of arbitrary order at infinity, for which in general the Cole-Hopf transformation does not allow any more a comparison to the heat equation. The main tool here instead is the representation of $h$ as the solution of some minimization problem through the Hamilton-Jacobi-Bellman formalism. This sole representation turns out to be powerful enough to produce local or pointwise estimates in ${cal W}$-spaces of functions with locally bounded averages, as in [24], implying in particular global existence and uniqueness of solutions.
We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda | abla h(t,x)|^2 +sqrt{D}, eta(t,x), qquad (t,x)inmathbb{R}_+timesmathbb{R}^d $$ in $dge 3$ dimensions in the perturbative regime, i.e. for $lambda>0$ small enough and a smooth, bounded, integrable initial condition $h_0=h(t=0,cdot)$. The forcing term $eta$ in the right-hand side is a regularized space-time white noise. The exponential of $h$ -- its so-called Cole-Hopf transform -- is known to satisfy a linear PDE with multiplicative noise. We prove a large-scale diffusive limit for the solution, in particular a time-integrated heat-kernel behavior for the covariance in a parabolic scaling. The proof is based on a rigorous implementation of K. Wilsons renormalization group scheme. A double cluster/momentum-decoupling expansion allows for perturbative estimates of the bare resolvent of the Cole-Hopf linear PDE in the small-field region where the noise is not too large, following the broad lines of Iagolnitzer-Magnen. Standard large deviation estimates for $eta$ make it possible to extend the above estimates to the large-field region. Finally, we show, by resumming all the by-products of the expansion, that the solution $h$ may be written in the large-scale limit (after a suitable Galilei transformation) as a small perturbation of the solution of the underlying linear Edwards-Wilkinson model ($lambda=0$) with renormalized coefficients $ u_{eff}= u+O(lambda^2),D_{eff}=D+O(lambda^2)$.
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the radiation part we prove a set of Strichartz estimates. As an application we study the long-time asymptotics of Yang-Mills fields on a wormhole spacetime.
The Cauchy problem for a scalar conservation laws admits a unique entropy solution when the data $u_0$ is a bounded measurable function (Kruzhkov). The semi-group $(S_t)_{tge0}$ is contracting in the $L^1$-distance. For the multi-dimensional Burgers equation, we show that $(S_t)_{tge0}$ extends uniquely as a continuous semi-group over $L^p(mathbb{R}^n)$ whenever $1le p<infty$, and $u(t):=S_tu_0$ is actually an entropy solution to the Cauchy problem. When $ple qle infty$ and $t>0$, $S_t$ actually maps $L^p(mathbb{R}^n)$ into $L^q(mathbb{R}^n)$. These results are based upon new dispersive estimates. The ingredients are on the one hand Compensated Integrability, and on the other hand a De Giorgi-type iteration.
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the distribution is obtained over a large range of values, down to a probability density as small as 10^{-1000} in the tails. Both short and long times are investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations. At short times the agreement with the analytical expression is spectacular. We observe that the far left and right tails, with exponents 5/2 and 3/2 respectively, are preserved until large time. We present some evidence for the predicted non-trivial crossover in the left tail from the 5/2 tail exponent to the cubic tail of Tracy-Widom, although the details of the full scaling form remains beyond reach.