Do you want to publish a course? Click here

Extended rotating disks around post-AGB stars

158   0   0.0 ( 0 )
 Added by Valentin Bujarrabal
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a group of binary post-AGB stars that show a conspicuous NIR excess, usually assumed to arise from hot dust in very compact possibly rotating disks. These stars are surrounded by significantly fainter nebulae than the standard, well studied protoplanetary and planetary nebulae (PPNe, PNe). We present high-sensitivity mm-wave observations of CO lines in 24 objects of this type. CO emission is detected in most observed sources and the line profiles show that the emissions very probably come from disks in rotation. We derive typical values of the disk mass between 1e-3 and 1e-2 Mo, about two orders of magnitude smaller than the (total) masses of standard PPNe. The high-detection rate (upper limits being in fact not very significant) clearly confirm that the NIR excess of these stars arises from compact disks in rotation, very probably the inner parts of those found here. Low-velocity outflows are also found in about eight objects, with moderate expansion velocities of ~ 10 km/s, to be compared with the velocities of about 100 km/s often found in standard PPNe. Except for two sources with complex profiles, the outflowing gas in our objects represents a minor nebular component. Our simple estimates of the disk typical sizes yields values ~ 0.5 - 1 arcsec, i.e. between 5e15 and 3e16 cm. Estimates of the linear momenta carried by the outflows, which can only be performed in a few well studied objects, also yield moderate values, compared with the linear momenta that can be released by the stellar radiation pressure (contrary, again, to the case of the very massive and fast bipolar outflows in standard PPNe, that are strongly overluminous). The mass and dynamics of nebulae around various classes of post-AGB stars differ very significantly, and we can expect the formation of PNe with very different properties.



rate research

Read More

63 - Michel Hillen 2015
It is now well established that FGK post-AGB stars that are surrounded by both hot and cold dust (as derived from the spectral energy distribution), are almost always part of a binary system with $100 < P_{orb} < 5000$~days. The properties and long-term stability of the dust emission requires it to arise from a gas- and dust-rich, puffed-up and (semi-)stable circumbinary disk. This interpretation has been confirmed with spatially resolved observations at a range of wavelengths for various individual objects. Here I present the first results of the first mid-IR interferometric survey of this class of objects. Our sample comprises 18 sources, most of which are confirmed binaries and which cover a range in IR excess. Our analysis clearly shows the compactness of the dust structures in these systems. We perform a statistical comparison with radiative transfer disk models, showing that most objects are indeed continuous disks from the sublimation radius outwards.
We observed two proto-planetary nebulae, HD 56126 representing a source with an elliptical circumstellar shell and IRAS 16594-4656 representing a source with a bipolar circumstellar shell, with ALMA in the 12CO and 13CO J=3-2 lines and neighboring continuum to see how the morpho-kinematics of CO gas and dust emission properties in their circumstellar environments differ.
Post-AGB binaries are surrounded by circumbinary disks of gas and dust that are similar to protoplanetary disks found around young stars. We aim to understand the structure of these disks and identify the physical phenomena at play in their very inner regions. We want to understand the disk-binary interaction and to further investigate the comparison with protoplanetary disks. We have conducted an interferometric snapshot survey of 23 post-AGB binaries in the near-infrared (H-band) using VLTI/PIONIER. We have fitted the multiwavelength visibilities and closure phases with purely geometrical models with an increasing complexity in order to retrieve the sizes, temperatures and flux ratios of the different components All sources are resolved and the different components contributing to the H-band flux are dissected. The environment of these targets is very complex: 13/23 targets need models with thirteen or more parameters to fit the data. We find that the inner disk rims follow and extend the size-luminosity relation established for disks around young stars with an offset toward larger sizes. The measured temperature of the near-infrared circumstellar emission of post-AGB binaries is lower (Tsub~1200K) than for young stars, probably due to a different dust mineralogy and/or gas density in the dust sublimation region. The dusty inner rims of the circumbinary disks around post-AGB binaries are ruled by dust sublimation physics. Additionally, a significant amount of the circumstellar H-band flux is over-resolved (14 targets have more than 10% of their non-stellar flux over-resolved) hinting for more structure from a yet unknown origin (disk structure or outflow). The amount of over-resolved flux is larger than around young stars. Due to the complexity of these targets, interferometric imaging is a necessary tool to reveal the interacting inner regions in a model-independent way.
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic field observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
Recently, we have discovered an error in our Monte-Carlo spectral fitting routine, more specifically where the errors on the fluxes were rescaled to get a reduced chi2 of 1. The rescaled errors were too big, resulting in too wide a range of good fits in our 100 step Monte-Carlo routine. This problem affects Figs. 7-9 and Tables A.1, A.2 in Gielen et al. (2008), Table 3 in Gielen et al. (2009a), and Table 4 in Gielen et al. (2009b). We corrected for this error and present the new values and errors in the tables below. The new values and errors nearly all fall within the old error range. Our best chi2 values and overall former scientific results are not affected. With these new errors some possible new trends in the dust parameters might be observed. These will be discussed in an upcoming paper where we extend the sample presented in Gielen et al. (2008) with newly obtained SPITZER-IRS data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا