Do you want to publish a course? Click here

Host mobility drives pathogen competition in spatially structured populations

203   0   0.0 ( 0 )
 Added by Sandro Meloni
 Publication date 2013
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health, regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is however challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.



rate research

Read More

Microbial populations often have complex spatial structures, with homogeneous competition holding only at a local scale. Population structure can strongly impact evolution, in particular by affecting the fixation probability of mutants. Here, we propose a model of structured microbial populations on graphs, where each node of the graph contains a well-mixed deme whose size can fluctuate, and where migrations are independent from birth and death events. We study analytically and numerically the mutant fixation probabilities in different structures, in the rare migration regime. In particular, we demonstrate that the star graph continuously transitions between amplifying and suppressing natural selection as migration rate asymmetry is varied. This elucidates the apparent paradox in existing constant-size models on graphs, where the star is an amplifier or a suppressor depending on the details of the dynamics or update rule chosen, e.g. whether each birth event precedes or follows a death event. The celebrated amplification property of the star graph for large populations is preserved in our model, for specific migration asymmetry. We further demonstrate a general mapping between our model and constant-size models on graphs, under a constraint on migration rates, which directly stems from assuming constant size. By lifting this constraint, our model reconciles and generalizes previous results, showing that migration rate asymmetry is key to determining whether a given population structure amplifies or suppresses natural selection.
In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyze how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the distribution of types as mutations march toward fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death-birth updating or for any process that combines birth-death and death-birth updating. If the rule is purely birth-death updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results indicating that continuous motion also suppresses natural selection.
In this paper, we carry out a computational study using the spectral decomposition of the fluctuations of a two-pathogen epidemic model around its deterministic attractor, i.e., steady state or limit cycle, to examine the role of partial vaccination and between-host pathogen interaction on early pathogen replacement during seasonal epidemics of influenza and respiratory syncytial virus.
Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, however, proved to be sensitive to the details of the underlying topology and dynamics. Here we introduce a minimal population structure that is described by two distinct hierarchical levels of interaction. We believe this model is able to identify effects of spatial structure that do not depend on the details of the topology. We derive the dynamics governing the evolution of a system starting from fundamental individual level stochastic processes through two successive meanfield approximations. In our model of population structure the topology of interactions is described by only two parameters: the effective population size at the local scale and the relative strength of local dynamics to global mixing. We demonstrate, for example, the existence of a continuous transition leading to the dominance of cooperation in populations with hierarchical levels of unstructured mixing as the benefit to cost ratio becomes smaller then the local population size. Applying our model of spatial structure to the repeated prisoners dilemma we uncover a novel and counterintuitive mechanism by which the constant influx of defectors sustains cooperation. Further exploring the phase space of the repeated prisoners dilemma and also of the rock-paper-scissor game we find indications of rich structure and are able to reproduce several effects observed in other models with explicit spatial embedding, such as the maintenance of biodiversity and the emergence of global oscillations.
Background: Analysing tumour architecture for metastatic potential usually focuses on phenotypic differences due to cellular morphology or specific genetic mutations, but often ignore the cells position within the heterogeneous substructure. Similar disregard for local neighborhood structure is common in mathematical models. Methods: We view the dynamics of disease progression as an evolutionary game between cellular phenotypes. A typical assumption in this modeling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard local heterogeneities. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go vs. grow game. Results: We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary -- such as a blood-vessel, organ capsule, or basement membrane -- we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (EMT positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Interpretation: Pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. We expect our approach to extend to other evolutionary game models where interaction neighborhoods change at fixed system boundaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا