Do you want to publish a course? Click here

Density Independent Smoothed Particle Hydrodynamics for Non-Ideal Equation of State

260   0   0.0 ( 0 )
 Added by Natsuki Hosono
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The smoothed particle hydrodynamics (SPH) method is a useful numerical tool for the study of a variety of astrophysical and planetlogical problems. However, it turned out that the standard SPH algorithm has problems in dealing with hydrodynamical instabilities. This problem is due to the assumption that the local density distribution is differentiable. In order to solve this problem, a new SPH formulation, which does not require the differentiability of the density, have been proposed. This new SPH method improved the treatment of hydrodynamical instabilities. This method, however, is applicable only to the equation of state (EOS) of the ideal gas. In this paper, we describe how to extend the new SPH method to non-ideal EOS. We present the results of various standard numerical tests for non-ideal EOS. Our new method works well for non-ideal EOS. We conclude that our new SPH can handle hydrodynamical instabilities for an arbitrary EOS and that it is an attractive alternative to the standard SPH.



rate research

Read More

In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low (high) density side is over (under) estimated. Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure), and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie & Thomas (2001) as a special case. Our formulation can be extended to handle a non-ideal gas easily.
At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointed out that standard formulation of SPH (SSPH) has difficulties in the treatment of a contact discontinuity such as a core-mantle boundary and a free surface such as a planetary surface. This difficulty comes from the assumption of differentiability of density in SSPH. We have developed an alternative formulation of SPH, density independent SPH (DISPH), which is based on differentiability of pressure instead of density to solve the problem of a contact discontinuity. In this paper, we report the results of the GI simulations with DISPH and compare them with those obtained with SSPH. We found that the disk properties, such as mass and angular momentum produced by DISPH is different from that of SSPH. In general, the disks formed by DISPH are more compact: while formation of a smaller mass moon for low-oblique impacts is expected with DISPH, inhibition of ejection would promote formation of a larger mass moon for high-oblique impacts. Since only the improvement of core-mantle boundary significantly affects the properties of circumplanetary disks generated by GI and DISPH has not been significantly improved from SSPH for a free surface, we should be very careful when some conclusions are drawn from the numerical simulations for GI. And it is necessary to develop the numerical hydrodynamical scheme for GI that can properly treat the free surface as well as the contact discontinuity.
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, H_2 chemistry, dust-gas mixtures, physical viscosity, external forces including numerous galactic potentials as well as implementations of Lense-Thirring precession, Poynting-Robertson drag and stochastic turbulent driving. Phantom is hereby made publicly available.
108 - Gen Chiaki , Naoki Yoshida 2015
We present a novel method for particle splitting in smoothed particle hydrodynamics simulations. Our method utilizes the Voronoi diagram for a given particle set to determine the position of fine daughter particles. We perform several test simulations to compare our method with a conventional splitting method in which the daughter particles are placed isotropically over the local smoothing length. We show that, with our method, the density deviation after splitting is reduced by a factor of about two compared with the conventional method. Splitting would smooth out the anisotropic density structure if the daughters are distributed isotropically, but our scheme allows the daughter particles to trace the original density distribution with length scales of the mean separation of their parent. We apply the particle splitting to simulations of the primordial gas cloud collapse. The thermal evolution is accurately followed to the hydrogen number density of 10^12 /cc. With the effective mass resolution of ~10^-4 Msun after the multi-step particle splitting, the protostellar disk structure is well resolved. We conclude that the method offers an efficient way to simulate the evolution of an interstellar gas and the formation of stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا