Do you want to publish a course? Click here

The (galaxy-wide) IMF in giant elliptical galaxies: From top to bottom

191   0   0.0 ( 0 )
 Added by Carsten Weidner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity dispersion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.



rate research

Read More

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha_2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha_1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies. In this contribution the IGIMF theory is described, and the accompanying contribution by Pflamm-Altenburg, Weidner & Kroupa (this volume) documents the applications of the IGIMF theory to galactic astrophysics.
201 - Carsten Weidner 2013
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs > 10 Msol yr^-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher M/L ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar initial mass function (IMF). For the Milky Way, the IGIMF yields very good agreement with the disk- and the bulge-IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a pc and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index beta of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
91 - Adam L. Kraus 2012
The frequency and properties of multiple star systems offer powerful tests of star formation models. Multiplicity surveys over the past decade have shown that binary properties vary strongly with mass, but the functional forms and the interplay between frequency and semimajor axis remain largely unconstrained. We present the results of a large-scale survey of multiplicity at the bottom of the IMF in several nearby young associations, encompassing 78 very low mass members observed with Keck laser guide star adaptive optics. Our survey confirms the overall trend observed in the field for lower-mass binary systems to be less frequent and more compact, including a null detection for any substellar binary systems with separations wider than ~7 AU. Combined with a Bayesian re-analysis of existing surveys, our results demonstrate that the binary frequency and binary separations decline smoothly between masses of 0.5 Msun and 0.02 Msun, though we can not distinguish the functional form of this decline due to a degeneracy between the total binary frequency and the mean binary separation. We also show that the mass ratio distribution becomes progressively more concentrated at q~1 for declining masses, though a small number of systems appear to have unusually wide separations and low mass ratios for their mass. Finally, we compare our results to synthetic binary populations generated by smoothed particle hydrodynamic simulations, noting the similarities and discussing possible explanations for the differences.
Both radiative and mechanical feedback from Active Galactic Nuclei have been found to be important for the evolution of elliptical galaxies. We compute how a shock may be driven from a central black hole into the gaseous envelope of an elliptical galaxy by mechanical as well as radiative feedback (in the form of nuclear winds) using high resolution 1-D hydrodynamical simulations. We calculate the synchrotron emission from the electron cosmic rays accelerated by the shocks (not the jets) in the central part of elliptical galaxies, and we also study the synchrotron spectrums evolution using the standard diffusive shock acceleration mechanism, which is routinely applied to the scaled volume case of supernova remnants. We find good agreement quantitatively between the synchrotron radio emission produced via this mechanism with extant observations of elliptical galaxies which are undergoing outbursts. Additionally, we also find that synchrotron optical and X-ray emission can co-exist inside elliptical galaxies during a certain phase of evolution subsequent to central outbursts. In fact, our calculations predict a synchrotron luminosity of $sim 1.3times 10^6 L_{odot}$ at the frequency 5 GHz (radio band), of $sim 1.1times 10^6 L_{odot}$ at $4.3times10^{14}$ Hz (R band, corresponding to the absolute magnitude -10.4), and of $sim 1.5times 10^{7} L_{odot}$ at $2.4times10^{17}$ Hz (soft X-ray, 0.5 -- 2.0 keV band).
97 - M. Rejkuba 2003
The distance to NGC 5128, the central galaxy of the Centaurus group and the nearest giant elliptical to us, has been determined using two independent distance indicators: the Mira period-luminosity (PL) relation and the luminosity of the tip of the red giant branch (RGB). The data were taken at two different locations in the halo of NGC 5128 with the ISAAC near-IR array on ESO VLT. From more than 20 hours of observations with ISAAC a very deep Ks-band luminosity function was constructed. The tip of the RGB is detected at Ks=21.24 pm 0.05 mag. Using an empirical calibration of the K-band RGB tip magnitude, and assuming a mean metallicity of [M/H]=-0.4 dex and reddening of E(B-V)=0.11, a distance modulus of NGC 5128 of (m-M)_0=27.87 pm 0.16 was derived. The comparison of the H-band RGB tip magnitude in NGC 5128 and the Galactic Bulge implies a distance modulus of NGC 5128 of (m-M)_0=27.9 pm 0.2 in good agreement with the K-band RGB tip measurement. The population of stars above the tip of the RGB amounts to 2176 stars in the outer halo field and 6072 stars in the inner halo field. The large majority of these sources belong to the asymptotic giant branch (AGB) population in NGC 5128 with numerous long period variables. Mira variables were used to determine the distance of NGC 5128 from a period-luminosity relation calibrated using the Hipparcos parallaxes and LMC Mira period-luminosity relation in the K-band. This is the first Mira period-luminosity relation outside the Local Group. A distance modulus of 27.96 pm 0.11 was derived, adopting the LMC distance modulus of 18.50 pm 0.04. The mean of the two methods yields a distance modulus to NGC 5128 of 27.92 pm 0.19 corresponding to D=3.84 pm 0.35 Mpc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا