Do you want to publish a course? Click here

The energy spectrum of cosmic rays at the highest energies

171   0   0.0 ( 0 )
 Added by Bruce Dawson
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of several working groups established for this workshop was charged with examining results and methods associated with the UHECR energy spectrum. We summarize the results of our discussions, which include a better understanding of the analysis choices made by groups and their motivation. We find that the energy spectra determined by the larger experiments are consistent in normalization and shape after energy scaling factors are applied. Those scaling factors are within systematic uncertainties in the energy scale, and we discuss future work aimed at reducing these systematics.



rate research

Read More

The energies of the most energetic extensive air showers observed at the Yakutsk array have been estimated with help of the all detectors readings instead of using of the standard procedure with a parameter s(600). The energy of the most energetic extensive air shower observed at the Yakutsk array happened to be 200, 200, 180 and 165 EeV with the values of the Xi**2 function per one degree of freedom 0.9, 1., 0.9 and 1.1 for the primary protons and helium, oxygen and iron nuclei accordingly.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 pm 0.025 $(stat.)$ pm 0.025 $(sys.) at $sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.
Ultra High Energy Cosmic Rays with energies above ~ 10^18 eV provide an unique window to study hadronic interactions at energies well above those achieved in the largest man-made accelerators. We argue that at those energies string percolation may occur and play an important role on the description of the induced Extensive Air Showers by enhancing strangeness and baryon production. This leads to a significant increase of the muon content of the cascade in agreement with recent data collected at UHECR experiments. In this work, the effects of string percolation in hadronic interactions are implemented in an EAS code and their impact on several shower observables is evaluated and discussed.
The elemental energy spectra of cosmic rays play an important role in understanding their acceleration and propagation. Most current results are obtained either from direct measurements by balloon or satellite detectors, or from indirect measurements by air shower detector arrays on the Earths surface. Imaging Air Cherenkov Telescopes (IACTs), used primarily for gamma-ray astronomy, can also be used for cosmic-ray physics. They are able to measure Cherenkov light emitted both by heavy nuclei and by secondary particles produced in their air showers, and are thus sensitive to the charge and energy of cosmic ray particles with energies of tens to hundreds of TeV. A measurement of the energy spectrum of iron nuclei, based on 71 hours of data taken by the VERITAS array of IACTs between 2009 and 2012, will be presented. The energy and other properties of the primary particle are reconstructed using a template-based likelihood fit. The event selection makes use of direct Cherenkov light, which is emitted by the primary particle before starting the air shower. A multivariate method is used to estimate the remaining background. Using these methods, the iron spectrum was measured in the energy range from 20 TeV to 500 TeV.
We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Arrays third fluorescence detector (Abu-Zayyad {it et al.}, {Astropart. Phys.} 39 (2012), 109). This combined spectrum corroborates the recently published Telescope Array surface detector spectrum (Abu-Zayyad {it et al.}, {Astrophys. Journ.} 768 (2013), L1) with independent systematic uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا