During polymer translocation driven by e.g. voltage drop across a nanopore, the segments in the cis-side is incessantly pulled into the pore, which are then pushed out of it into the trans-side. This pulling and pushing polymer segments are described in the continuum level by nonlinear transport processes known, respectively, as fast and slow diffusions. By matching solutions of both sides through the mass conservation across the pore, we provide a physical basis for the cis and trans dynamical asymmetry, a feature repeatedly reported in recent numerical simulations. We then predict how the total driving force is dynamically allocated between cis (pulling) and trans (pushing) sides, demonstrating that the trans-side event adds a finite-chain length effect to the dynamical scaling, which may become substantial for weak force and/or high pore friction cases.