No Arabic abstract
Using large-scale determinant quantum Monte Carlo simulations in combination with the stochastic analytical continuation, we study two-particle dynamical correlation functions in the anisotropic square lattice of weakly coupled one-dimensional (1D) Hubbard chains at half-filling and in the presence of weak frustration. The evolution of the static spin structure factor upon increasing the interchain coupling is suggestive of the transition from the power-law decay of spin-spin correlations in the 1D limit to long-range antiferromagnetic order in the quasi-1D regime and at $T=0$. In the numerically accessible regime of interchain couplings, the charge sector remains gapped. The low-energy momentum dependence of the spin excitations is well described by the linear spin-wave theory with the largest intensity located around the antiferromagnetic wave vector. This magnon mode corresponds to a bound state of two spinons. At higher energies the spinons deconfine and we observe signatures of the two-spinon continuum which progressively fade away as a function of interchain hopping.
We use extensive DMRG calculations to show that a classification of SU(n) spin chains with regard to the existence of spinon confinement and hence a Haldane gap obtained previously for valence bond solid models applies to SU(n) Heisenberg chains as well. In particular, we observe spinon confinement due to a next-nearest neighbor interaction in the SU(4) representation 10 spin chain.
Using a non-perturbative functional renormalization group approach involving both fermionic and bosonic fields we calculate the interaction-induced change of the Fermi surface of spinless fermions moving on two chains connected by weak interchain hopping t_{bot}. We show that interchain backscattering can strongly reduce the distance Delta between the Fermi momenta associated with the bonding and the antibonding band, corresponding to a large reduction of the effective interchain hopping t_{bot}^{*} A self-consistent one-loop approximation neglecting marginal vertex corrections and wave-function renormalizations predicts a confinement transition for sufficiently large interchain backscattering, where the renormalized t_{bot}^{*} vanishes. However, a more accurate calculation taking vertex corrections and wave-function renormalizations into account predicts only weak confinement in the sense that 0< | t_{bot}^{*} | << | t_{bot} |. Our method can be applied to other strong-coupling problems where the dominant scattering channel is known.
We explain how spinons and magnons naturally arise in $mathrm{SU}(2)$ invariant spin chains when describing ground states and elementary excitations using MPS. Within this description, spinons can emerge in a spin-1 chain at a first-order transition between a symmetry-protected topological phase and a trivial phase. We provide MPS simulations for the spinon dispersion relations in a frustrated and dimerized spin-1 chain, and show that these spinons determine the low-lying spectrum in the vicinity of this transition by the formation of spinon/anti-spinon bound states.
Magnetic excitations in a weakly coupled spin dimers and chains compound Cu2Fe2Ge4O13 are measured by inelastic neutron scattering. Both structure factors and dispersion of low energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe$^{3+}$ ($S = 5/2$) chains. Additional dispersionless excitations are observed at higher energies, at $hbar omega = 24$ meV, and associated with singlet-triplet transitions within Cu$^{2+}$-dimers. Both types of excitations can be understood by treating weak interactions between the Cu$^{2+}$ and Fe$^{3+}$ subsystems at the level of the Mean Field/ Random Phase Approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.
We study the ground-state properties of the double-chain Hubbard model coupled with ferromagnetic exchange interaction by using the weak-coupling theory, density-matrix renormalization group technique, and Lanczos exact-diagonalization method. We determine the ground-state phase diagram in the parameter space of the ferromagnetic exchange interaction and band filling. We find that, in high electron density regime, the spin gap opens and the spin-singlet $d_{xy}$-wave-like pairing correlation is most dominant, whereas in low electron density regime, the fully-polarized ferromagnetic state is stabilized where the spin-triplet $p_{y}$-wave-like pairing correlation is most dominant.