This paper is concerned with methods for numerical computation of eigenvalue enclosures. We examine in close detail the equivalence between an extension of the Lehmann-Maehly-Goerisch method developed a few years ago by Zimmermann and Mertins, and a geometrically motivated method developed more recently by Davies and Plum. We extend various previously known results in the theory and establish explicit convergence estimates in both settings. The theoretical results are supported by two benchmark numerical experiments on the isotropic Maxwell eigenvalue problem.