Identifying influential spreaders is crucial for understanding and controlling spreading processes on social networks. Via assigning degree-dependent weights onto links associated with the ground node, we proposed a variant to a recent ranking algorithm named LeaderRank [L. Lv et al., PLoS ONE 6 (2011) e21202]. According to the simulations on the standard SIR model, the weighted LeaderRank performs better than LeaderRank in three aspects: (i) the ability to find out more influential spreaders, (ii) the higher tolerance to noisy data, and (iii) the higher robustness to intentional attacks.