Do you want to publish a course? Click here

Dynamical instability of white dwarfs and breaking of spherical symmetry under the presence of extreme magnetic fields

89   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive, highly magnetized white dwarfs with fields up to $10^9$ G have been observed and theoretically used for the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior fields up to $10^{18}$ G, have been recently purported to obey a new maximum mass limit, $M_{rm max}approx 2.58~M_odot$, which largely overcomes the traditional Chandrasekhar value, $M_{rm Ch}approx 1.44~M_odot$. Such a much larger limit would make these astrophysical objects viable candidates for the explanation of the superluminous population of type Ia supernovae. We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse $beta$-decay, and pycnonuclear fusion reactions are of most relevance for the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the canonical Chandrasekhar mass limit of white dwarfs has to be still applied.



rate research

Read More

118 - A. Kawka 2018
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present population synthesis calculations showing that this hypothesis is supported by observations of magnetic binaries.
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super Jupiter residing in the outer regions of the planetary system of the white dwarf is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.
The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium configurations. The equation of state, which takes into account the beta-equilibrium, the nuclear and the Coulomb interactions between the nuclei and the surrounding electrons, is obtained as a function of the compression by considering each atom constrained in a Wigner-Seitz cell. The contribution of quantum statistics, weak, nuclear, and electromagnetic interactions is obtained by the determination of the chemical potential of the Wigner-Seitz cell. The further contribution of the general relativistic equilibrium of white dwarf matter is expressed by the simple formula $sqrt{g_{00}}mu_{rm ws}$= constant, which links the chemical potential of the Wigner-Seitz cell $mu_{rm ws}$ with the general relativistic gravitational potential $g_{00}$ at each point of the configuration. The configuration outside each Wigner-Seitz cell is strictly neutral and therefore no global electric field is necessary to warranty the equilibrium of the white dwarf. These equations modify the ones used by Chandrasekhar by taking into due account the Coulomb interaction between the nuclei and the electrons as well as inverse beta-decay. They also generalize the work of Salpeter by considering a unified self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell. The consequences on the numerical value of the Chandrasekhar-Landau mass limit as well as on the mass-radius relation of $^4$He, $^{12}$C, $^{16}$O and $^{56}$Fe white dwarfs are presented. All these effects should be taken into account in processes requiring a precision knowledge of the white dwarf parameters.
Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the presence of magnetic fields is therefore extremely challenging. However, external pollution of a cool white dwarf by, e.g., planetary debris, leads to the appearance of metal lines in its spectral energy distribution. These lines provide a unique tool to identify and measure magnetism in the coolest and oldest white dwarfs in the Galaxy. We report the identification of 7 strongly metal polluted, cool (T_eff < 8000 K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An analysis of our larger magnitude-limited sample of cool DZ yields a lower limit on the magnetic incidence of 13+/-4 percent, noticeably much higher than among hot DA white dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا